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Abstract: The Tchebychev distance on fuzzy sets (FSs) has been proposed to construct a measure
of proximity between two modalities in a two-dimensional statistical description. The parameter-
ized symmetric difference operations and cardinality for intuitionistic fuzzy sets (IFSs) has been
proposed.

This paper extends to intuitionistic fuzzy set the Tchebychev distance and possibility measure
on fuzzy sets. More precisely, we firstly use the parameterized symmetric difference operations
and the cardinality on IFSs to propose a Tchebychev distance measure for IFSs. From these,
we then deduce two examples of metrics. Secondly, we introduce an intuitionistic fuzzy mapping
that preserves the properties of the fuzzy mapping. We use this mapping to propose a Tchebychev
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possibility measure based on IF-cardinality. This leads to define a proximity measure between two
modalities of a given character in a two-dimensional intuitionistic fuzzy statistical description.
Keywords: Intuitionistic fuzzy set, Distance measure, Metrics, Possibility measure, Intuitionistic
fuzzy mapping, Intuitionistic fuzzy statistical description.
2020 Mathematics Subject Classification: 03F55.

1 Introduction

In real life we are faced with situations where the informations are ambiguous and insufficient.
To deal with these situations, Zadeh [29] introduced the theory of fuzzy set (FS). This theory
allows for an element to belong to a group (set) with some degree of membership (partial
membership). Continuing in the same direction as Zadeh [29], Atanassov [4] introduced the
theory of intuitionistic fuzzy sets (IFSs). While the fuzzy set theory is concerned with membership
and non-membership, the concept of IFS allows for the additional term called the degree of
hesitancy. Since then, scholars in several fields use these theories for decision making [2,3,14,21–
23, 27]. Possibility measures, distance measures and metrics are great decision support tools in
these theories. The possibility theory [12,30] is presented as an alternative framework to represent
uncertain information. Distance measures and metrics was used in [8, 10, 15, 17, 20, 28, 31] for
decision making in several environments such as medical diagnosis and pattern recognition for
example.

In recent years, statistical theory is widely used in fuzziness and intuitionistic fuzziness.
In descriptive statistics for example, when X and Y are crisp characters, (X−1(a), Y −1(b))

is the set of individuals of Ω that is having both the modalities a and b on the respectively
sets of observations A and B. To summarize the information contained in the pair (X, Y ),

we then construct a contingency table where at the crossroads of the row a and the column
b, we have the number of individuals of Ω that is having both the modalities a and b, and
denoted by Card(X = a, Y = b). This is to measure by the cardinal, the importance given
to the pair (a, b) by using quantitative evaluation of the data. However when dealing with
vague and ambiguous information, we need a qualitative evaluation of the data. Then another
measure like possibility measure to evaluate the set (X = a, Y = b), comes into play. Gwet [18]
proposed the distance which extends to the fuzzy case the Tchebychev distance on crisp sets;
then he used this distance to construct a proximity measure between two character modalities
in a two-dimensional fuzzy statistical description. This measure being based on the cardinal
of the symmetric difference between two fuzzy sets. Several authors such as Antonov [1],
Ejegwa [13], Huawen [19] and Taiwo et al. [24] introduced and studied the properties of some
difference and symmetric difference operations for IFSs. Determined from the intuitionistic fuzzy
R-implication operators, Taiwo et al. [24] introduced more general difference and symmetric
difference operations for IFSs and present various characterizations of these operators. They
further derive one property of cardinality of the symmetric difference between IFSs.

This work extends the result of Gwet [18] to the intuitionistic fuzzy case. To be more
precise, we first use the symmetric difference proposed by Taiwo et al. [24] and the notion
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of cardinality of an intuitionistic fuzzy set proposed by Tripathy et al. [25] to propose a more
generalized Tchebychev distance measures based on intuitionistic fuzzy implication. We then
deduce two examples of metrics. That will be the extensions of the Gwet’s distance to the
intuitionistic fuzzy case. Notice that Atanassova [7] proposed on “Remarks on the cardinality
of the intuitionistic fuzzy sets”, the first research on the cardinality of an IFS. Secondly, we give
a definition of an intuitionistic fuzzy mapping and we show that, the properties of the fuzzy
mapping defined by Gwet [18] are preserved by this mapping. At the end we use this mapping
to propose a Tchebychev possibility measure based on IF-cardinality. This help to propose a
proximity measure between two modalities of characters in a two-dimensional fuzzy statistical
description.

The remaining part of the paper is organized as follows. Section 2 gives basic notions of
IFSs. Section 3 deals with some classes of Tchebychev distance measures and metrics based on
intuitionistic fuzzy implication. Section 4 examines the concept of intuitionistic fuzzy mapping.
Section 5 presents the concept of intuitionistic fuzzy statistical description and Section 6 comprises
the concluding remarks part.

2 Preliminaries

In this section, we recall some basic notions that form the background of our theoretical framework.
Throughout the paper, Ω is a nonempty and finite universe, (L∗,≤L∗ ,∨,∧) is a complete lattice
with unit elements 0L∗ = (0, 1) and 1L∗ = (1, 0) where L∗ = {(ω1, ω2) ∈ [0, 1] × [0, 1] |
ω1 + ω2 ≤ 1}, ≤L∗ be an order on L∗ defined by ∀(ω1, ω2), (ω′1, ω

′
2) ∈ L∗,

(ω1, ω2) ≤L∗ (ω′1, ω
′
2)⇐⇒ (ω1 ≤ ω′1 and ω2 ≥ ω′2).

The meet operator ∧ and join operator ∨ on L∗ are defined as follows.

(ω1, ω2) ∧ (ω′1, ω
′
2) = (min(ω1, ω

′
1),max(ω2, ω

′
2))

and
(ω1, ω2) ∨ (ω′1, ω

′
2) = (max(ω1, ω

′
1),min(ω2, ω

′
2))

We recall now some operators on fuzzy sets and IFSs ( [9, 11, 16, 24]).

2.1 On IFS and its operations

In the rest of this paper, > is a fuzzy t-norm and S is a fuzzy t-conorm, I> and JS the fuzzy
implication and co-implication operators associated with > and S, respectively. T = (>, S) is a
t-representable intuitionistic fuzzy t-norm (t-representable IF-t-norm), that is, a binary operation
T on L∗ defined by: ∀ω = (ω1, ω2),y = (y1, y2) ∈ L∗, T (ω,y) = (>(ω1, y1), S(ω2, y2)).

The IF-R-implication to the corresponding fuzzy co-implication JS associated with S and
fuzzy R-implication I> associated with > is defined by: ∀ω = (ω1, ω2), y = (y1, y2) ∈ L∗,

IT (ω,y) = (min (I>(ω1, y1), 1− JS(ω2, y2)) , JS(ω2, y2)) .
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In the following, we recall preliminaries on IFS and its operations (Antonov [1], Atanassov
[4, 6], Taiwo et al. [24], Tzvetkov [26]).

An intuitionistic fuzzy set (IFS) D on Ω is defined by

D = {〈ω, µD(ω), νD(ω)〉 | µD(ω), νD(ω) ∈ [0, 1], 0 ≤ µD(ω) + νD(ω) ≤ 1, ω ∈ Ω},

where µD(ω), νD(ω) are respectively the degrees of membership and non-membership of ω in
D. πD(ω) = 1− µD(ω)− νD(ω) is called the intuitionistic fuzzy index or hesitancy degree of ω
in D. If µD(ω) + νD(ω) = 1 for all ω ∈ Ω, then D is a fuzzy set on Ω.

Throughout this paper, FS(Ω) will be the set of all fuzzy sets on Ω and IFS(Ω) will be the
set of all intuitionistic fuzzy sets on Ω.

Let A, B be two IFSs defined on Ω. The intuitionistic fuzzy symmetric difference associated
with T of A and B is the IFS on Ω denoted by A M T B and defined by the membership and
non-membership degrees as follows: For all ω ∈ Ω,

µAMT B(ω) = JS(νA(ω) ∧ νB(ω), νA(ω) ∨ νB(ω)),

νAMT B(ω) = min{I>(µA(ω) ∨ µB(ω), µA(ω) ∧ µB(ω)), (1)

1− JS(νA(ω) ∧ νB(ω), νA(ω) ∨ νB(ω))}.

Taiwo et al. [24] showed that: when A and B are fuzzy sets on Ω and, S and > dual,
the intuitionistic fuzzy symmetric difference operator is an extension of the fuzzy symmetric
difference operator proposed by Fono et al. [15]. More precisely, A∆TB is a fuzzy set (i.e
νA∆T B(ω) = 1 − µA∆T B(ω) ∀ω ∈ Ω) associated to > and defined by µA4>B(ω) = µA∆T B(ω)

where A4> B is a fuzzy symmetric difference between A and B proposed by Fono et al. [15].
We have the following classical properties of the intuitionistic fuzzy symmetric difference

operation ( [24]).
Let A,B and C be IFSs on Ω. A − T B is the intuitionistic fuzzy difference (IF-difference)
operation defined by Taiwo et al. [24]. The following properties for intuitionistic fuzzy symmetric
difference operations hold:
A M T B = (A −T B)∪(B −T A); A M T B = B M T A; IfA ⊆ B, thenA M T B = B −T A
and A M T A = ∅.

The following example gives the expressions of memberships and non-memberships degrees
of IF symmetric difference operator associated with t-representable IF t-norms TL of Łukasiewicz
and TP product, respectively (Taiwo et al. [24]).

Example 1. Let A and B be two intuitionistic fuzzy sets defined on Ω. For all ω ∈ Ω,

1. The IF symmetric difference between A and B associated with TL = (>L, SL) is given by:

µAMTL B(ω) =

{
0, if (µA(ω), νA(ω)) = (µB(ω), νB(ω))

(νA(ω)− νB(ω)) ∨ (νB(ω)− νA(ω)), if (µA(ω), νA(ω)) 6= (µB(ω), νB(ω)),
(2)
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and

νAMTL B(ω) =


1, if (µA(ω), νA(ω))

= (µB(ω), νB(ω))

min
{
1− (µA(ω)− µB(ω)) ∨ (µB(ω)− µA(ω)),

1− (νA(ω)− νB(ω)) ∨ (νB(ω)− νA(ω))
}

else.

(3)

2. The IF symmetric difference between A and B associated with TP = (>P , SP ) is given by:

µAMTP B(ω) =

{
0, if νA(ω) = νB(ω)

νA(ω)∨νB(ω)−νA(ω)∧νB(ω)
1−νA(ω)∧νB(ω) = (νA(ω)−νB(ω))∨(νB(ω)−νA(ω))

(1−νA(ω))∨(1−νB(ω)) , else.
(4)

and

νAMTP B(ω) =


1, if (µA(ω), νA(ω))

= (µB(ω), νB(ω))

min
{
µA(ω)∧µB(ω)
µA(ω)∨µB(ω) , 1−

(νA(ω)−νB(ω))∨(νB(ω)−νA(ω))
(1−νA(ω))∨(1−νB(ω))

}
, if (µA(ω), νA(ω))

6= (µB(ω), νB(ω)).

(5)

In the following subsection, we recall distance propose by Gwet [18] in the case of fuzzy sets.

2.2 On Tchebychev distance measure and metrics for fuzzy sets

We recall here that, the Tchebychev metric d1 between crisp sets A and B is defined as follow:

d1(A,B) =
∨
ω∈Ω

| 1A(ω)− 1B(ω) |

where 1A and 1B are the memberships indicators functions. To extend d1 into fuzzy sets, Gwet
[18] proposed the mapping d> defined as follow: Let A and B be fuzzy sets on Ω.

d>(A,B) =
∨
ω∈Ω

µA4>B(ω)

where 4> is a fuzzy symmetric difference operator associated to the fuzzy t-norm >. Under
the fuzzy t-norms >L of Łukasiewicz and >P of product, he proved that d> is a metric. More
precisely, he showed that,

d>P
(A,B) =

∨
ω∈Ω

| µA(ω)− µB(ω) |
µA(ω) ∨ µB(ω)

(6)

and
d>L

(A,B) =
∨
ω∈Ω

| µA(ω)− µB(ω) |, (7)

which is a natural extension of d1. He called d> the generalized Tchebychev distance or the
distance of the height of the symmetric difference. It is a formulation analogous to that of the
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distance of the cardinality of the symmetric difference widely used in Data Analysis and recently
defined by Fono et al. [15] as follow:

d′>(A,B) =
1

n
Card(A4> B) =

1

n

n∑
i=1

µA4>B(ωi).

Notice that d′> is a distance measure for fuzzy set. Then it is easy to prove that d> is also a
distance measure for fuzzy set.

In the following section, we will propose some classes of Tchebychev distance measures
and metrics for IFSs based on the preview symmetric difference between IFSs. We assume that
Ω = {ω1, ω2, ..., ωn} have n elements.

3 Some classes of Tchebychev distance measures
and metrics based on intuitionistic fuzzy implication

In the following subsection, we extend to the intuitionistic fuzzy case the distance measure d>.

3.1 Generalized Tchebychev distance measure and metrics
for intuitionistic fuzzy sets

We first recall here that Tripathy et al. [25] defined the intuitionistic fuzzy cardinality (IF-
cardinality) of an IFS A on Ω denoted by Count(A) as follow:

Count(A) =

(
n∑

i=1

µA(ωi),
n∑

i=1

(1− νA(ωi))

)

Let A, B ∈ IFS(Ω). Using a linear combination of the components, of the cardinality, of the
symmetric difference, we propose the following mapping:

d0
T (A,B) =

1

2n

n∑
i=1

(1 + µA∆T B(ω)− νA∆T B(ω)) . (8)

We then deduce the following mapping:

dT (A,B) =
1

2

∨
ω∈Ω

(1 + µA∆T B(ω)− νA∆T B(ω)) (9)

In view of its construction and the definition of the symmetric difference on the basis of IF-
implication, these mappings are in our opinion based on IF-cardinality of the symmetric difference
and on the IF-implication.

The following Definition 3.1 gives definitions and useful properties of distance measures and
metrics between IFSs.
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Definition 3.1. [8, 10, 28, 31] Let d : IFS(Ω)× IFS(Ω)→ [0, 1] be a mapping.

a) d is a distance measure if for all A,B,C ∈ IFS(Ω), the following properties hold: (i)
0 ≤ d(A,B) ≤ 1; (ii) d(A,B) = 0 if and only if A = B; (iii) d(A,B) = d(B,A); (iv) If
A ⊆ B ⊆ C, then d(A,C) ≥ d(A,B) and d(A,C) ≥ d(B,C).

b) d is a metric (distance) if for all A,B,C ∈ IFS(Ω), d satisfies the following properties:
axiom (i) d(A,B) = 0 if and only if A = B; axiom (ii) d(A,B) = d(B,A) and axiom (iii)
d(A,C) ≤ d(A,B) + d(B,C).

The following main result shows that, the mappings defined by Eqs. (8)-(9) are distance
measures.

Theorem 1. d0
T and dT are distance measures associated with T .

dT is this distance measure which we call the generalize Tchebychev distance measure or the
distance measure of the height of symmetric difference for intuitionistic fuzzy sets. d0

T can be
called the distance measure of the cardinality of the symmetric difference.

Let A, B, C ∈ IFS(Ω). To prove Theorem 1, we first notice that it is easy to prove the
following additional properties (Eq. (11) and Eq. (12)) for IF symmetric difference by using the
definition, the properties of the symmetric difference and the following well-known properties
(Eq. (10)) of JS and I>, for all a, b ∈ [0, 1],{

(i) JS(a, b) = 0 if and only if a ≥ b

(ii) I>(a, b) = 1 if and only if a ≤ b
(10)

A∆TB = ∅ if and only if A = B. (11)

If A ⊆ B ⊆ C, then A∆TB ⊆ A∆T C and B∆T C ⊆ A∆T C. (12)

Proof. (i) 0 ≤ dT (A,B) ≤ 1 sinceA∆TB ∈ IFS(X) =⇒ 0 ≤ 1+µA∆T B(ω)−νA∆T B(ω) ≤
2 ∀ω ∈ Ω.

(ii) We prove that dT (A,B) = 0 ⇐⇒ A = B. We recall first that ∅ is an IFS defined by
µ∅ = 0 and ν∅ = 1. Thereby (dT (A,B) = 0 ⇐⇒ µA∆T B(ω) = 0 and νA∆T B(ω) = 1

∀ω ∈ Ω)⇐⇒ (A∆TB = ∅). From Eq. (11) the result follows.

(iii) We prove that dT (A,B) = dT (B,A). This is obvious duce to the fact that, A∆TB =

B∆TA.

(iv) Assume that A ⊆ B ⊆ C. We prove that dT (A,C) ≥ dT (A,B) and dT (A,C) ≥
dT (B,C). From Eq. (12) µA∆T B(ω) ≤ µA∆T C(ω), µB∆T C(ω) ≤ µA∆T C(ω), 1−νA∆T B(ω) ≤
1− νA∆T C(ω), 1− νB∆T C(ω) ≤ 1− νA∆T C(ω). The result follows immediately from Eq.
(9).

The following example gives the expressions of dTL and dTP .
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Example 2. Let A, B ∈ IFS(Ω).

dTL(A,B) =
1

2

∨
ω∈Ω

(max {| µA(ω)− µB(ω) |, | νA(ω)− νB(ω) |}+ | νA(ω)− νB(ω) |) (13)

and

dTP (A,B) =
1

2

∨
ω∈Ω

(
max

{
| µA(ω)−µB(ω) |
µA(ω) ∨ µB(ω)

,
| νA(ω)− νB(ω) |
1−νA(ω) ∧ νB(ω)

}
+
| νA(ω)− νB(ω) |
1−νA(ω) ∧ νB(ω)

)
(14)

Assume that Ω = {ω1, ω2, ω3}, A = {(ω1, 0.8, 0.1), (ω2, 0.6, 0.4), (ω3, 0.4, 0.5)} and B =

{(ω1, 0.4, 0.4), (ω2, 0.6, 0.3), (ω3, 0.7, 0.3)}. Then dTL(A,B) = 1
2

(0.7 ∨ 0.2 ∨ 0.5) = 0.35 and
dTP (A,B) = 1

2

(
5
6
∨ 2

7
∨ 5

7

)
= 5

12
.

The following result shows that dTL and dTP defined by Eq. (13) and Eq. (14) respectively,
are metrics that extend into intuitionistic fuzzy sets the metrics d>L

defined by Eq. (7) and d>P

defined by Eq. (6), respectively.

Proposition 3.1.

1) The mappings dTL and dTP are metrics.

2) If A and B are fuzzy set on Ω, then dTL(A,B) = d>L
(A,B) and dTP (A,B) = d>P

(A,B).

Proof. Proof of 1) We prove that dTL and dTP are metrics. From Definition 3.1 and Theorem 1, it
is sufficient to prove the triangular inequalities. Let A, B, C ∈ IFS(Ω) and let ω ∈ Ω.
We prove that dTL(A,C) ≤ dTL(A,B) + dTL(B,C). From{

| µA(ω)− µC(ω) | ≤ | µA(ω)− µB(ω) | + | µB(ω)− µC(ω) |
| νA(ω)− νC(ω) | ≤ | νA(ω)− νB(ω) | + | νB(ω)− νC(ω) |

(15)

Eq. (16) holds.
max{| µA(ω)− µC(ω) |, | νA(ω)− νC(ω) |}
≤ max{| µA(ω)− µB(ω) | + | µB(ω)− µC(ω) |,

| νA(ω)− νB(ω) | + | νB(ω)− νC(ω) |}
(16)

Then Eq. (17) holds since ∀ a, b, c, d ∈ R, (a+ b) ∨ (c+ d) ≤ (a ∨ c) + (b ∨ d).

max{| µA(ω)− µC(ω) |, | νA(ω)− νC(ω) |}
≤ max{| µA(ω)− µB(ω) |, | νA(ω)− νB(ω) |}

+ max{| µB(ω)− µC(ω) |, | νB(ω)− νC(ω) |}
(17)

Thus
max{| µA(ω)− µC(ω) |, | νA(ω)− νC(ω) |} + | νA(ω)− νC(ω) |
≤ max{| µA(ω)− µB(ω) |, | νA(ω)− νB(ω) |} + | νA(ω)− νB(ω) |

+ max{| µB(ω)− µC(ω) |, | νB(ω)− νC(ω) | + | νB(ω)− νC(ω) |}
(18)

The result follows immediately since for all elements ai, bi of the finite set,

∨
i
(ai + bi) ≤ ∨

i
(ai + ∨bi).
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We prove that dTP (A,C) ≤ dTP (A,B) + dTP (B,C). Since d>P
defined by Eq. (6) is a metric,

the following Eq. (19) holds.

| µA(ω)− µC(ω) |
µA(ω) ∨ µC(ω)

≤ | µA(ω)− µB(ω) |
µA(ω) ∨ µB(ω)

+
| µB(ω)− µC(ω) |
µB(ω) ∨ µC(ω)

∀ω ∈ Ω. (19)

We prove now that the following Eq. (20) holds.

| νA(ω)− νC(ω) |
1− νA(ω) ∧ νC(ω)

≤ | νA(ω)− νB(ω) |
1− νA(ω) ∧ νB(ω)

+
| νB(ω)− νC(ω) |
1− νB(ω) ∧ νC(ω)

∀ω ∈ Ω. (20)

Let a, b, c ∈ [0, 1]. Then

| a− b |
(1− a) ∧ (1− b)

= 1− (
1− a
1− b

) ∧ (
1− b
1− a

);

| a− c |
(1− a) ∧ (1− c)

= 1− (
1− a
1− c

) ∧ (
1− c
1− a

)

and

| b− c |
(1− b) ∧ (1− c)

= 1− (
1− b
1− c

) ∧ (
1− c
1− b

).

(
1− a
1− b

) ∧ (
1− b
1− a

) + (
1− b
1− c

) ∧ (
1− c
1− b

) = (
1− a
1− b

+
1− b
1− c

) ∧ (
1− a
1− b

+
1− c
1− b

)

∧ (
1− b
1− a

+
1− b
1− c

) ∧ (
1− b
1− a

+
1− c
1− b

)

≤ (
1− a
1− b

+
1− c
1− b

) ∧ (
1− b
1− a

+
1− b
1− c

)

≤ (1 +
1− a
1− c

) ∧ (1 +
1− c
1− a

)

≤ 1 +
1− a
1− c

∧ 1− c
1− a

.

Passing to the complement of 1, we deduce that:

1− (
1− a
1− c

) ∧ (
1− c
1− a

) ≤ 1− (
1− a
1− b

) ∧ (
1− b
1− a

) + 1− (
1− b
1− c

) ∧ (
1− c
1− b

). (21)

By setting a = νA(ω), b = νB(ω) and c = νC(ω), ∀ω ∈ Ω, in Eq. (21), Eq. (20) holds.
By combining Eq. (19) and Eq. (20) like in Eq. (16), Eq. (17) and Eq. (18), the result follows.

Proof of 2) We assume that, A and B are fuzzy sets on Ω. We prove that dTL(A,B) = d>L
(A,B)

and dTP (A,B) = d>P
(A,B). Since A and B are fuzzy sets on Ω, then νA(ω) = 1 − µA(ω)

and νB(ω) = 1 − µB(ω) ∀ ω ∈ Ω. Therefore | µA(ω) − µB(ω) |=| νA(ω) − νB(ω) | and
1−νA(ω)∧νB(ω) = (1−νA(ω))∨(1−νB(ω)) = µA(ω)∨µB(ω). The results follow immediately
from the expressions of dTL and d>L

defined by Eq. (13) and Eq. (7) respectively, and from the
expressions of dTP and d>P

defined by Eq. (14) and Eq. (6) respectively.
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The following result shows that, the generalize Tchebychev distance measure dT and the new
distance measure d0

T are the extensions of the distance measures d> of Gwet [18] and d′> of Fono
et al. [15] defined on fuzzy sets respectively, into intuitionistic fuzzy sets.

Proposition 3.2. LetA andB be fuzzy sets on Ω. If> and S are dual, then d0
T (A,B) = d′>(A,B)

and dT (A,B) = d>(A,B).

Proof. Assume that > and S are dual. We prove that d0
T (A,B) = d′>(A,B) and dT (A,B) =

d>(A,B). From Taiwo et al. [24], since > and S are dual, and A and B are fuzzy sets on
Ω, A∆TB is a fuzzy set (i.e νA∆T B(ω) = 1 − µA∆T B(ω)) associated to > and defined by
µA∆>B(ω) = µA∆T B(ω). Using these results of Taiwo et al. [24] in Eqs. (8)–(9), the result
follows.

We must use the cardinality to define the possibility measure on IFSs. This require the
intuitionistic fuzzy mapping.
In the following section, we will propose a mapping on the intuitionistic fuzzy sets.

4 Mapping on the intuitionistic fuzzy sets

A modality a of a character X is observed by the individual ω of a population Ω if and only
if X(ω) = a. This reflects the fact that a is the image of ω by mapping X. This assignment
operation is symbolized by a crisp mapping X.

4.1 Fuzzy mapping

Gwet [18] extends crisp mapping to fuzzy mapping that we recall in this subsection. Let E and
F be two sets. A fuzzy correspondence between E and F is a fuzzy relationship R of E towards
F. Such relation takes the form of an array with two entries E and F, where at the crossroads
the row x and the column y, we have the number µR(x, y) ∈ [0, 1] which evaluate a membership
degree with which x and y are related. Given an element x of E, the cut follow x, is a fuzzy set
C(x) defined by:

µC(x)(y) = µR(x, y) ∀y ∈ F.

The correspondence R is a fuzzy mapping if∨
y∈F

µC(x)(y) = 1 ∀x ∈ E.

This condition shows that on each row of the fuzzy correspondence table, we find at least once
the number 1. Or even that each element of the starting set has at least one crisp image in the
target set.

The image of an element x of E by the mapping X is a fuzzy set X(x) defined by:

X(x) = C(x)
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Let X be a crisp mapping of E towards F and A be a fuzzy part of E. The extension principle of
Zadeh [29] makes it possible to define from A, a fuzzy part of F denoted by X(A) by

µX(A)(y) =
∨
x∈E

µA(x) ∧ 1X(x)=y.

When X is a fuzzy mapping, this principle can be extended in fuzzy case by:

µX(A)(y) =
∨
x∈E

µA(x) ∧ µX(x)(y).

X(A) is said to be the image of the fuzzy set A by the fuzzy mapping X.
Notice that when µX(x)(y) = 1, y = X(x) is called crisp image of x.

Let X be a fuzzy mapping and B be a fuzzy part of F. The reciprocal image of B by X is
defined by

µX−1(B)(x) =
∨
y∈F

µB(y) ∧ µX(x)(y).

Then µX−1(y)(x) = µX(x)(y).We notice that a row x of the fuzzy correspondence table represents
the image of x by X and the column y represented the reciprocal image of y by X. Subsequently,
we will write X = y to represent X−1({y}),

4.2 Intuitionistic fuzzy mapping

Let us now see how we can extend all of these definitions to the intuitionistic fuzzy case. Let
E and F be two referential sets. An intuitionistic fuzzy correspondence between E and F is
an intuitionistic fuzzy relationship R of E towards F. Such a relation takes the form of an array
with two entries E and F (Table 1) where at the crossroads, the row x and the column y, we
have the pair 〈µR(x, y), νR(x, y)〉 ∈ [0, 1]2 such that µR(x, y) + νR(x, y) ≤ 1, which evaluate a
membership and nonmembership degrees with which x and y are related. Given an element x of
E, the cut follow x, is a intuitionistic fuzzy set C(x) defined by:

(µC(x)(y), νC(x)(y)) = (µR(x, y), νR(x, y)) ∀y ∈ F.

Table 1. Intuitionistic fuzzy correspondence R between E and F

E \ F ... y ...

...

x ... (µR(x, y), νR(x, y)) ....

...

The following is definition of intuitionistic fuzzy mapping.

Definition 4.1. Let R be an intuitionistic fuzzy correspondence between E and F. Then R is an
intuitionistic fuzzy mapping (IF-mapping) if(∨

y∈F

µC(x)(y),
∧
y∈F

νC(x)(y)
)

= (1, 0) ∀x ∈ E. (22)
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Definition 4.1 coincides with the truth degree of the evaluation function defined in [5]. Eq. (22)
shows that on each row of the intuitionistic fuzzy correspondence table (Table 1), we find at least
one pair of numbers (1,0). Or even that each element of the starting set has at least one crisp
image in the target set.

The image of an element x of E by the mapping X is an intuitionistic fuzzy set X(x) defined
by:

X(x) = C(x)

LetX be a fuzzy mapping ofE towards F andA be an intuitionistic fuzzy set ofE. The extension
principle of Atanassov [4] makes it possible to define from A, an intuitionistic fuzzy set of F
denoted by X(A) by

(µX(A)(y), νX(A)(y)) = (
∨
x∈E

µA(x) ∧ µX(x)(y),
∧
x∈E

νA(x) ∨ (1− µX(x)(y))).

The following is definition of image of an intuitionistic fuzzy set by an intuitionistic fuzzy
mapping.

Definition 4.2. LetX be an intuitionistic fuzzy mapping ofE towards F andA be an intuitionistic
fuzzy set of E. The image of A by X is an intuitionistic fuzzy set of F, denoted X(A) and defined
by:

(µX(A)(y), νX(A)(y)) = (
∨
x∈E

µA(x) ∧ µX(x)(y),
∧
x∈E

νA(x) ∨ νX(x)(y)).

Notice that when µX(x)(y)+νX(x)(y) = 1, y = X(x) is called fuzzy image of x. This extends
in fuzzy case crisp image of x defined by Gwet [18]

The following is definition of reciprocal image of an intuitionistic fuzzy set by an intuitionistic
fuzzy mapping.

Definition 4.3. Let X be an intuitionistic fuzzy mapping and B be an intuitionistic fuzzy set of F.
The reciprocal image of B by X is an intuitionistic fuzzy set of E defined by

(µX−1(B)(x), νX−1(B)(x)) = (
∨
y∈F

µB(y) ∧ µX(x)(y),
∧
y∈F

νB(y) ∨ νX(x)(y)) ∀x ∈ E.

We notice that µX−1(y)(x) = µX(x)(y) and νX−1(y)(x) = νX(x)(y). Then a row of x of the
intuitionistic fuzzy correspondence table (Table 1) represents the image of x byX and the column
of y represents the reciprocal image of y by X.

The following is definition of the composite of two IF-mappings.

Definition 4.4. Let X : E −→ F and Y : F −→ G be two IF-mappings. The composite
mapping Y ◦X : E −→ G is the intuitionistic fuzzy set defined by

(µY ◦X(x)(z), νY ◦X(x)(z)) = (
∨
y∈F

µX(x)(y) ∧ µY (y)(z),
∧
y∈F

νX(x)(y) ∨ νY (y)(z)) ∀x ∈ E, ∀z ∈ G.
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From the definition of the intuitionistic fuzzy image, we obtain the associativity of the max-min
composition by Y ◦X(x) = Y (X(x)).

The following proprieties of fuzzy mappings proposed by Gwet [18] hold for intuitionistic
fuzzy mappings.

Proposition 4.1. LetX : E −→ F be an intuitionistic fuzzy mapping,A1, A2 be two intuitionistic
fuzzy sets of E and B1, B2 be two intuitionistic fuzzy sets of F then:

1. X−1(F ) = E;

2.
⋃
y∈F

(X = y) = E;

3. A1 ⊂ A2 ⇐⇒ X(A1) ⊂ X(A2); and B1 ⊂ B2 ⇐⇒ X−1(B1) ⊂ X−1(B2);

4. X(A1 ∪ A2) = X(A1) ∪X(A2) and X−1(B1 ∪B2) = X−1(B1) ∪X−1(B2)

5. X(A1 ∩ A2) ⊂ X(A1) ∩X(A2) and X−1(B1 ∩B2) ⊂ X−1(B1) ∩X−1(B2)

Proof. 1. To prove thatX−1(F ) = E, it is sufficient to prove that, for all x ∈ E, µX−1(F )(x) =

1 and νX−1(F )(x) = 0. Let x ∈ E.

(µX−1(F )(x), νX−1(F )(x)) = (
∨
y∈F

µF (y) ∧ µX(x)(y),
∧
y∈F

νF (y) ∨ νX(x)(y))

= (
∨
y∈F

µX(x)(y),
∧
y∈F

νX(x)(y))

= (1, 0) since X is an IF-mapping.

2. We prove that
⋃
y∈F

(X = y) = E. It is sufficient to prove that, for all x ∈ E, µ ⋃
y∈F

(X=y)(x) = 1

and ν ⋃
y∈F

(X=y)(x) = 0. Let x ∈ E.

(µ ⋃
y∈F

(X=y)(x), ν ⋃
y∈F

(X=y)(x)) = (
∨
y∈F

µX(x)(y),
∧
y∈F

νX(x)(y))

= (1, 0) since X is an IF-mapping.

3. We prove firstly that A1 ⊂ A2 ⇐⇒ X(A1) ⊂ X(A2).

A1 ⊂ A2 ⇐⇒ µA1(x) ≤ µA2(x) and νA1(x) ≥ νA2(x) ∀x ∈ E
⇐⇒ µA1(x) ∧ µX(x)(y) ≤ µA2(x) ∧ µX(x)(y)

and νA1(x) ∨ νX(x)(y) ≥ νA2(x) ∨ νX(x)(y) ∀x ∈ E ∀y ∈ F
⇐⇒

∨
x∈E

µA1(x) ∧ µX(x)(y) ≤
∨
x∈E

µA2(x) ∧ µX(x)(y)

and
∧
x∈E

νA1(x) ∨ νX(x)(y) ≥
∧
x∈E

νA2(x) ∨ νX(x)(y) ∀y ∈ F

⇐⇒ µX(A1)(y) ≤ µX(A2)(y)

and νX(A1)(y) ≥ νX(A2)(y) ∀y ∈ F.
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We prove secondly that B1 ⊂ B2 ⇐⇒ X−1(B1) ⊂ X−1(B2).

B1 ⊂ B2 ⇐⇒ µB1(y) ≤ µB2(y) and νB1(y) ≥ νB2(y) ∀y ∈ F
⇐⇒ µB1(y) ∧ µX=y(x) ≤ µB2(y) ∧ µX=y(x)

and νB1(y) ∨ νX=y(x) ≥ νB2(y) ∨ νX=y(x) ∀x ∈ E ∀y ∈ F

⇐⇒
∨
y∈F

µB1(y) ∧ µX=y(x) ≤
∨
y∈F

µB2(y) ∧ µX=y(x)

and
∧
y∈F

νB1(y) ∨ νX=y(x) ≥
∧
y∈F

νB2(y) ∨ νX=y(x) ∀x ∈ E

⇐⇒ µX−1(B1)(x) ≤ µX−1(B2)(x)

and νX−1(B1)(x) ≥ νX−1(B2)(x) ∀x ∈ E.

4. We prove that X(A1 ∪ A2) = X(A1) ∪X(A2).

µX(A1∪A2)(y) =
∨
x∈E

µA1∪A2(x) ∧ µX(x)(y) ∀y ∈ F

=
( ∨
x∈E

µA1(x) ∧ µX(x)(y)
)
∨
( ∨
x∈E

µA2(x) ∧ µX(x)(y)
)
∀y ∈ F

= µX(A1)(y) ∨ µX(A2)(y) ∀y ∈ F

and

νX(A1∪A2)(y) =
∧
x∈E

νA1∪A2(x) ∨ νX(x)(y) ∀y ∈ F

= (
∧
x∈E

νA1(x) ∨ µX(x)(y)) ∧ (
∧
x∈E

νA2(x) ∨ νX(x)(y)) ∀y ∈ F

= νX(A1)(y) ∧ νX(A2)(y) ∀y ∈ F.

We prove that X−1(B1 ∪B2) = X−1(B1) ∪X−1(B2).

µX−1(B1∪B2)(x) =
∨
y∈F

µB1∪B2(y) ∧ µX=y(x) ∀x ∈ E

= (
∨
y∈F

µB1(y) ∧ µX=y(x)) ∨ (
∨
y∈F

µB2(y) ∧ µX=y(x)) ∀x ∈ E

= µX−1(B1)(x) ∨ µX−1(B2)(x) ∀x ∈ E.

and

νX−1(B1∪B2)(x) =
∧
y∈F

νB1∪B2(y) ∨ νX=y(x) ∀x ∈ E

= (
∧
y∈F

νB1(y) ∨ µX=y(x)) ∧ (
∧
y∈F

νB2(y) ∨ νX=y(x)) ∀x ∈ E

= νX−1(B1)(x) ∧ νX−1(B2)(x) ∀x ∈ E

5. To prove the last properties for X and X−1, we recall that A1∩A2 ⊂ Ai and B1∩B2 ⊂ Bi

according to i ∈ {1, 2}. The third property of Proposition 4.1 gives the result.
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5 Intuitionistic fuzzy statistical description

In this Section, unless otherwise stated, Ω will be a population. An individual of Ω will be
designated by the symbol ω. X is the intuitionistic fuzzy character which describes the population
Ω if and only if X is an IF-mapping to Ω in the set A of observations called set of modalities.

5.1 Descriptor and signification

The following are definitions of descriptor of the individual ω and signification of the observation a.

Definition 5.1. The descriptor of ω is the intuitionsitic fuzzy set X(w). The signification of the
modality a of A is the IFS X−1(a).

The intuitionsitic fuzzy description of Ω by the character X is presented in the form of an
array with two entries (Table 2).

Table 2. Intuitionistic fuzzy description of Ω

Ω \ A ... a ...

...

w ... (µX(ω)(a), νX(ω)(a)) ...

...

The rank row ω of Table 2 represents the descriptor of ω, and the rank column a represents
the signification of the modality a. At the crossroads of the row ω and column a, we have the
pair of numbers 〈k(ω, a), l(ω, a)〉 = 〈µX(ω)(a), νX(ω)(a)〉 which represents the membership and
nonmembership degrees of association between the individual ω and the modality a. A modality
aj from A is said to be observed (significant) if and only if

(
∨
ω∈Ω

µX(ω)(aj),
∧
ω∈Ω

νX(ω)(aj)) 6= (0, 1).

This means that there is at least one individual in the population that is associated, even weakly,
in the modality aj.

A modality aj from A is said to be clearly observed (or fully significant) if and only if

(
∨
ω∈Ω

µX(ω)(aj),
∧
ω∈Ω

νX(ω)(aj)) = (1, 0).

This means that there is at least one individual in the population that is clearly associated, in the
modality aj.

In this study, unless otherwise specified, a modality will always be assumed to be observed.
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5.2 Possibilistic correspondence

In this subsection, we consider two intuitionistic fuzzy characters X and Y which describe the
population Ω with values in the respective sets of observations A and B. X and Y are also called
intuitionistic fuzzy variables. Let (X, Y ) : Ω −→ [0, 1]A × [0, 1]B be the joint variable defined
by

(X, Y )(ω) = (X(ω), Y (ω)).

The join signification is defined by

(X, Y )−1(a, b) = (X = a, Y = b) = (X = a) ∩ (Y = b).

The aim of this Subsection is to measure the joint signification (X = a, Y = b) of the pair of
observations (a, b) ∈ A×B.

Notice that whenX and Y are crisp characters, the set (X = a, Y = b) is the set of individuals
of Ω that having both the modalities a and b. To summarize the information contained in the pair
(X, Y ),we then construct a contingency table where at the crossroads of the row a and the column
b, we have the number of individuals of Ω that having both the modalities a and b, and denoted by
Card(X = a, Y = b). This is to measure by the cardinal, the importance given to the pair (a, b)

by using quantitative evaluation of the data. However when dealing with vague and ambiguous
information, we need a qualitative evaluation of the data. That is the reason why we use another
measure like possibility measure to evaluate the set (X = a, Y = b), just like Gwet [18] does in
fuzzy case. Then this work extends to the intuitionistic fuzzy case that of Gwet [18] in the fuzzy
case.

In the next of this paper, we assume that,X and Y are IF-mappings; that means (X=a, Y =b)

is an IFS on Ω. We then obtain a table (Table 3) of possibilistic correspondence (π(a, b))a∈A,b∈B

with π(a, b) = Π(X = a, Y = b), where Π is a possibility measure on Ω.

Table 3. Possibilistic correspondence

A \B ... b ...

...

a ... π(a, b) ... Π(X = a)

... ...

... Π(Y = b) ...

The aim of the following section is to propose a possibility measure on Ω which will help to
construct a possibilistic correspondance.

5.3 Possibility measure

The possibility theory [12, 30] is presented as an alternative framework to represent uncertain
information. It is closely linked to the theory of fuzzy sets and intuitionistic fuzzy sets. Before
coming back to the population, Ω will be the finite referential set.
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The following is the definition of the possibility measure.

Definition 5.2. The mapping Π : IFS(Ω) −→ [0, 1] is a possibility measure if the following
properties hold: (i) Π(∅) = 0, (ii) Π(A ∪ B) = Π(A) ∨ Π(B) ∀A,B ∈ IFS(Ω) Moreover, if
Π(Ω) = 1, then the possibility measure is said to be normal.

This definition is close with the definition of the possibility measure on fuzzy set. The number
Π(A) quantifies to what extent the event A ⊂ Ω is possible. Note that the possibility measures
satisfy the relation: Π(A) ∨ Π(Ac) = 1. Where Ac is the complement of A in Ω.

In reality, it is improbable, even impossible for an alternative ω to be in the set A and in the
set B with the memberships and the nonmemberships degrees which verify µA(ω) < µB(ω) and
νA(ω) < νB(ω). A such alternative will be assumed to be non-existent in this work.

We consider the following mapping:

Π(A) =
1

2

∨
ω∈Ω

(1 + µA(ω)− νA(ω)) (23)

In view of its construction and the expression of Count(A), this mapping is in our opinion based
on IF-cardinality of A.

The second main result of this paper gives an example of possibility measure for IFSs.

Theorem 2. The mapping Π defined by Eq. (23) is a possibility measure.

Proof. Π(∅) = 0 and Π(Ω) = 1 are obvious.
Let A, B ∈ IFS(Ω). We prove that Π(A ∪ B) = Π(A) ∨ Π(B). Let ω0, ω1 and ω2

such that: Π(A ∪ B) = 1
2

(1 + µA∪B(ω0)− νA∪B(ω0)) , Π(A) = 1
2

(1 + µA(ω1)− νA(ω1)) and
Π(B) = 1

2
(1 + µB(ω2)− νB(ω2)) .

If µA(ω0) ≤ µB(ω0), then νA(ω0) ≥ νB(ω0), and

Π(A ∪B) =
1

2
(1 + µB(ω0)− νB(ω0)) ≤ Π(B)

≤ 1

2
(1 + µA∪B(ω2)− νA∪B(ω2)) ≤ Π(A ∪B).

If µB(ω0) ≤ µA(ω0), then νB(ω0) ≥ νA(ω0), and Π(A ∪ B) = Π(A) by using the same
process. Thus Π(A ∪B) = Π(A) ∨ Π(B).

This result shows also that Π(A)(ω) ∨ Π(Ac)(ω) = 1 for all ω ∈ Ω since A ∪ Ac = Ω.

Remark 1. When A is a fuzzy set, the possibility measure Π become

Π(A) =
∨
ω∈Ω

µA(ω)

which is the well known possibility measure in fuzzy set ( [18]).

We deduce the possibility measure of A ∩T B defined in [24] by

A ∩T B = {〈ω,>(µA(ω), µB(ω)), S(νA(ω), νB(ω))〉, ω ∈ Ω}
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as follows:
Π(A ∩T B) =

1

2

∨
ω∈Ω

(1 +>(µA(ω), µB(ω))− S(νA(ω), νB(ω)))

and when T = (min,max), we have:

Π(A ∩TM B) =
1

2

∨
ω∈Ω

(1 + µA(ω) ∧ µB(ω)− νA(ω) ∨ νB(ω))

We consider now the population Ω and the characters X and Y of the sets of the observations A
and B respectively. We define the proximity in the sense of Tchebychev between the modalities
a and a′ of A as a possibility measure of the IFSs (X,X)−1(a, a′) = (X = a,X = a′) as follow:

π(a, a′) = Π(X = a,X = a′) = Π(X = a ∩TM X = a′)

= 1
2

∨
ω∈Ω

(1 + µX=a(ω) ∧ µX=a′(ω)− νX=a(ω) ∨ νX=a′(ω))

Then the possibilistic correspondence between the modalities a of A and b of B is define as
follow:

π(a, b) = Π(X = a ∩TM Y = b)

= 1
2

∨
ω∈Ω

(1 + µX=a(ω) ∧ µY =b(ω)− νX=a(ω) ∨ νY =b(ω))

= 1
2

∨
ω∈Ω

(
1 + µX=a(ω) ∧ µY (ω)(b)− νX=a(ω) ∨ νY (ω)(b)

)
Remark 2. In practice, it can happen that we directly obtain a proximity between a and a′ without
going through a population Ω. In this case for a, a′ ∈ A,

π(a, a′) = Π(Y (X = a), Y (X = a′))

= 1
2

∨
b∈B

(
1 + µY (X=a)(b) ∧ µY (X=a′)(b)− νY (X=a)(b) ∨ νY (X=a′)(b)

)
,

and the possibilistic measure:

Π(X = a) = Π(Y (X = a)) =
1

2

∨
b∈B

(
1 + µY (X=a)(b)− νY (X=a)(b)

)
.

6 Conclusion

In this paper, we propose some classes of distance measures based on the cardinality of the
symmetric difference, which extend to the intuitionistic fuzzy set the Tchebychev distance
proposed by Gwet [18] in the fuzzy case. We then prove that if the chosen parameter is the
IF-t-norm of Łukasiewicz or Product, these classes become metrics. To propose a proximity
measure between two modalities of intuitionistic fuzzy characters in a two-dimensional
intuitionistic fuzzy statistical description, we introduce an intuitionistic fuzzy mapping. We show
that this mapping preserves the properties of fuzzy mappings. We finally propose a possibility
measure based on IF-cardinality and we use it to define a proximity measure.

In this study, we have proposed possibility measure for IFS. One possible direction of interest
is to investigate adaptability of our formulations to the case of intervals values intuitionistic fuzzy
sets. These directions are left for future research.
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