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1 Introduction

A large class of physically important problems is described by fuzzy differential equations.
Kaleva [4] discussed the properties of differentiable fuzzy set valued mappings and give the exis-
tence and uniqueness theorem for a solution of the fuzzy differential equations x0(t) = f(t, x(t))

when f satisfies the Lipschitz condition. And Feng [5] studied the existence and uniqueness of a
solution, the continuity of the solution with respect to the initial value and the stability of fuzzy
stochastic differential equations.

On the other hand, Jae Ug Jeong [1] gave the the existence and uniqueness theorem of a
solution to the nonlocal fuzzy differential equation using the contraction mapping principle.

In this work, we study the existence and uniqueness of solutions for intuitionistic fuzzy dif-
ferential equations with nonlocal conditions of the following form:x′(t) = Ax(t) + f(t, x(t)) t ∈ I = [0, a]

x(0) = x0 + g
(
t1, t2, . . . , tp, x(.)

) (1)
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where A generates an intuitionistic fuzzy strongly continuous semigroup (T (t))t≥0 on IF1 see [3],
x0 ∈ IF1 f and g are given functions to be specified later.

The symbol g
(
t1, t2, . . . , tp, x(.)

)
is used in the sense that in the place of . we can substitute

only elements of the {t1, t2, . . . , tp}. For example,g
(
t1, t2, . . . , tp, x(.)

)
can be defined by the

formula
g
(
t1, t2, . . . , tp, x(.)

)
= c1x(t1) + c2x(t2) + · · ·+ cpx(tp)

where ci (i = 1, 2, . . . , p) are given constants.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper.

Let us denote by Pk(R) the set of all nonempty compact convex subsets of R.

Definition 1. We denote

IF1 =
{

(u, v) : R→ [0, 1]2 |∀x ∈ R /0 ≤ u(x) + v(x) ≤ 1
}

where

1. (u, v) is normal i.e there exists x0, x1 ∈ R such that u(x0) = 1 and v(x1) = 1.

2. u is fuzzy convex and v is fuzzy concave.

3. u is upper semi-continuous and v is lower semi-continuous

4. supp(u, v) = cl
(
{x ∈ R : v(x) < 1}

)
is bounded.

For α ∈ [0, 1] and (u, v) ∈ IF1, we define[
(u, v)

]α
= {x ∈ R | v(x) ≤ 1− α} and

[
(u, v)

]
α

= {x ∈ R | u(x) ≥ α}

Remark 1. We can consider
[
(u, v)

]
α

as [u]α and
[
(u, v)

]α
as [1− v]α in the fuzzy case.

Definition 2. The intuitionistic fuzzy zero is intuitionistic fuzzy set defined by

0(1,0)(x) =

(1, 0) x = 0

(0, 1) x 6= 0

Definition 3. Let (u, v) ,(u′, v′) ∈ IF1 and λ ∈ R, we define the addition by :(
(u, v)⊕ (u′, v′)

)
(z) =

(
sup
z=x+y

min
(
u(x), u′(y)

)
; inf
z=x+y

max
(
v(x), v′(y)

))

λ(u, v) =

(λu, λv) if λ 6= 0

0(0,1) if λ = 0
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According to Zadeh’s extension principle, we have addition and scalar multiplication in intu-
itionistic fuzzy number space IF1 as follows:[

(u, v)⊕ (z, w)
]α

=
[
(u, v)

]α
+
[
(z, w)

]α
,

[
λ(u, v)

]α
= λ

[
(u, v)

]α
[
(u, v)⊕ (z, w)

]
α

=
[
(u, v)

]
α

+
[
(z, w)

]
α
,

[
λ(u, v)

]
α

= λ
[
(u, v)

]
α

where (u, v), (z, w) ∈ IF1 and λ ∈ R.
We denote

[(u, v)]+l (α) = inf{x ∈ R | u(x) ≥ α}, [(u, v)]+r (α) = sup{x ∈ R | u(x) ≥ α}
[(u, v)]−l (α) = inf{x ∈ R | v(x) ≤ 1− α}, [(u, v)]−r (α) = sup{x ∈ R | v(x) ≤ 1− α}

Remark 2. [
(u, v)

]
α

=
[
[(u, v)]+l (α), [(u, v)]+r (α)

]
[
(u, v)

]α
=
[
[(u, v)]−l (α), [(u, v)]−r (α)

]
Theorem 1. letM = {Mα, M

α : α ∈ [0, 1]} be a family of subsets in R satisfying Conditions
(i)− (iv)

i) α ≤ β ⇒Mβ ⊂Mα and Mβ ⊂Mα

ii) Mα and Mα are nonempty compact convex sets in R for each α ∈ [0, 1].

iii) for any non-decreasing sequence αi → α on [0, 1], we have Mα =
⋂
iMαi and Mα =⋂

iM
αi .

iv) For each α ∈ [0, 1], Mα ⊂Mα and define u and v, by

u(x) =

0 if x /∈M0

sup {α ∈ [0, 1] : x ∈Mα} if x ∈M0

v(x) =

1 if x /∈M0

1− sup {α ∈ [0, 1] : x ∈Mα} ifx ∈M0

Then (u, v) ∈ IF1.

Proof. See [2].

The space IF1 is metrizable by the distance of the following form :

d∞

(
(u, v), (z, w)

)
=

1

4
sup

0<α≤1

∥∥∥∥[(u, v)
]+

r
(α)−

[
(z, w)

]+

r
(α)

∥∥∥∥
+

1

4
sup

0<α≤1

∥∥∥∥[(u, v)
]+

l
(α)−

[
(z, w)

]+

l
(α)

∥∥∥∥+
1

4
sup

0<α≤1

∥∥∥∥[(u, v)
]−
r

(α)−
[
(z, w)

]−
r

(α)

∥∥∥∥
+

1

4
sup

0<α≤1

∥∥∥∥[(u, v)
]−
l

(α)−
[
(z, w)

]−
l

(α)

∥∥∥∥
where ‖ ‖ denotes the usual Euclidean norm in R.
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Theorem 2.
(

IF1, d∞

)
is a complete metric space.

Proof. See [2].

3 The L2-space

Let (Ω,A, P ) be a complete probability space.

Definition 4. An intuitionistic fuzzy random variable (i.f.r.v, for short) is a Borel measurable
function X : (Ω,A)→

(
IF1, d∞

)
The norm ‖ ‖ of an intuitionistic fuzzy number (u, v) ∈ IF1 is defined by

‖(u, v)‖ = d∞

(
(u, v), 0(1,0)

)
=
∥∥∥[(u, v)

]
0

∥∥∥ =
1

2
sup

a∈[(u,v)]0

|a|+ 1

2
inf

b∈[(u,v)]0
|b|

If E‖X‖ < ∞, then the expected value EX exists. X is called a second-order i.f.r.v, provided
E‖X‖2 <∞. Let

L
(

Ω,A, P
)

= {X|X is a i.f.r.v with
∫

Ω

d∞(X, 0(1,0))
2dP (ω) <∞}

The family of all second-order i.f.r.v.’s also denoted by L2(IF1) (L2, for short).
Any two i.f.r.v.’s X and Y are called equivalent if P (X 6= Y) = 0. The all equivalent elements
in L2 are identified. Define

ϕ(X,Y) =

(∫
Ω

d∞(X,Y)2dP

) 1
2

, X,Y ∈ L2

The norm ‖X‖2 of an element X ∈ L2 is defined by

‖X‖2 = ϕ(X, 0(1,0)) =

(∫
Ω

d∞(X, 0(1,0))
2dP

) 1
2

Proposition 1. (L2, ϕ) is a complete metric space.

In addition ϕ satisfies that

ϕ(X + Z,Y + Z) = ϕ(X,Y) , ϕ(λX, λY) = |λ|ϕ(X,Y) (2)

ϕ(λX, kX) ≤ |λ− k|‖X‖2 (3)

for any X , Y, Z ∈ L2 and λ, k ∈ R

Definition 5. Let (Xn)n≥1 be a sequence in L2, we call that Xn converges in mean square or m.s.
converges to X as n→∞, if ϕ(Xn, X)→ 0, write Xn

m.s−→ X or lim
n→∞

Xn = X

Definition 6. Let T be a finite or an infinite interval in R. A mapping X : T → L2 is called
a second-order intuitionistic fuzzy stochastic process (i.f.s.p. for short). If X is continuous at a
t ∈ T with respect to the metric ϕ then we call X continuous in mean square or m.s. continuous
at t. If X is m.s. continuous at every t ∈ T then we call X m.s. continuous.

61



4 Nonlocal intuitionistic fuzzy differential equation

Throughout this work, we suppose that

(H1) A : D(A) ⊆ IF1 → IF1 is the generator of a strongly continuous semigroup (T (t))t≥0 and
there exist constantsM and ω ∈ R∗+ such that ϕ (T (t)x, T (t)y) ≤Meωtϕ (x, y) , for t ≥
0 , x, y ∈ L2 ∩D(A).

(H2) f : I × L2 → L2 is m.s. continuous intuitionistic fuzzy mapping with respect to t,
which satisfies a generalized Lipschitz condition, i.e., there exists constant K1 such that
ϕ(f(t, x), f(t, y)) ≤ K1ϕ(x, y).

(H3) g : Ip × L2 → L2 satisfies a generalized Lipschitz condition, i.e., there exists constant K2

such that, ∀t ∈ I , x, y ∈ L2 and x0 ∈ L2 ϕ

(
g
(
t1, t2, . . . , tp, x(.)

)
, g
(
t1, t2, . . . , tp, y(.)

))
≤

K2ϕ(x, y).

We consider the nonlocal intuitionistic fuzzy differential equation:x′(t) = Ax(t) + f(t, x(t)) t ∈ I = [0, a]

x(0) = x0 + g
(
t1, t2, . . . , tp, x(.)

) (4)

where 0 < t1 < t2 < · · · < tp ≤ a

Definition 7. A function x(.) : I → L2 is said a mild solution of (4), if

x(t) = T (t)

[
x0 + g

(
t1, t2, ..., tp, x(.)

)]
+

∫ t

0

T (t− s)f(s, x(s))ds

for 0 ≤ t ≤ a.

Theorem 3. Assume that assumptions (H1)− (H3) hold. Then (4) has a unique mild solution on
the interval [0, ξ] where

ξ = min

{
a ,

1

ω
log
( b− ε+ N1M

ω

MN2 + N1M
ω

)
,

1

ω
log
( 1 + K1M

ω

K2M + K1M
ω

)}
and

ϕ
(
f(t, x), 0(1,0)

)
≤ N1 , ϕ

(
g
(
t1, t2, . . . , tp, x(.)

)
, 0(1,0)

)
≤ N2

Proof. Let B = {x ∈ L2 | H(x, x0) ≤ b} be the space of m.s. continuous intuitionistic fuzzy
mappings with

H(x, y) = sup
0≤t≤ξ

ϕ
(
x(t), y(t)

)
and b a positive number. Define a mapping P : B → B by

Px(t) = T (t)

[
x0 + g

(
t1, t2, . . . , tp, x(.)

)]
+

∫ t

0

T (t− s)f(s, x(s))ds
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First of all, we show that P is m.s. continuous and H(Px, x0) ≤ b. Since f is m.s. continuous,
we have

ϕ(Px(t+ h), Px(t)) = ϕ

(
T (t+ h)

[
x0 + g

(
t1, t2, . . . , tp, x(.)

)]
+

∫ t+h

0

T (t+ h− s)f(s, x(s))ds, T (t)
[
x0 + g(t1, t2, . . . , tp, x(.))

]
+

∫ t

0

T (t− s)f(s, x(s))ds

)

≤ ϕ
(
T (t+ h)x0, T (t)x0

)
+ ϕ

(
T (t+ h)g

(
t1, t2, . . . , tp, x(.)

)
, T (t)g

(
t1, t2, . . . , tp, x(.)

))
+ ϕ

(∫ t+h

0

T (t+ h− s)f(s, x(s))ds,

∫ t

0

T (t− s)f(s, x(s))ds

)
≤ ϕ

(
T (t+ h)x0, T (t)x0

)
+ ϕ

(
T (t+ h)g

(
t1, t2, . . . , tp, x(.)

)
, T (t)g

(
t1, t2, . . . , tp, x(.)

))
+ ϕ

(∫ h

0

T (t+ h− s)f(s, x(s))ds, 0(1,0)

)
+ ϕ

(∫ t+h

h

T (t+ h− s)f(s, x(s))ds,

∫ t

0

T (t− s)f(s, x(s))ds

)
≤Meωt

[
ϕ
(
T (h)x0, x0

)
+ ϕ

(
T (h)g(t1, t2, . . . , tp, x(.)), g(t1, t2, . . . , tp, x(.))

)]
+ ϕ

(∫ h

0

T (t+ h− s)f(s, x(s))ds, 0(1,0)

)
+

∫ t

0

Meω(t−s)ϕ

(
f(s+ h, x(s+ h)), f(s, x(s))

)
ds

It is clear that ϕ
(
T (h)x0, x0

)
→ 0, ϕ

(
T (h)g(t1, t2, . . . , tp, x(.)), g(t1, t2, . . . , tp, x(.))

)
→ 0

and

ϕ

(∫ h

0

T (t+ h− s)f(s, x(s))ds, 0(1,0)

)
)→ 0

as h→ 0.
And by the dominated convergence theorem:∫ t

0

Meω(t−s)ϕ

(
f(s+ h, x(s+ h)), f(s, x(s))

)
ds→ 0

That is, the map P is m.s. continuous on I . Furthermore,

ϕ(Px(t), x0) = ϕ

(
T (t)

[
x0 + g(t1, t2, . . . , tp, x(.))

]
+

∫ t

0

T (t− s)f(s, x(s))ds, x0

)
≤ ϕ

(
T (t)x0, x0

)
+ ϕ

(
T (t)g(t1, t2, . . . , tp, x(.)), 0(1,0)

)
+ ϕ

(∫ t

0

T (t− s)f(s, x(s))ds, 0(1,0)

)
≤ ε+Meωtϕ

(
g(t1, t2, . . . , tp, x(.)), 0(1,0)

)
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+

∫ t

0

Meω(t−s)ϕ

(
f(s, x(s)), 0(1,0)

)
ds

≤ ε+N2Meωt +
N1M

ω
[eωt − 1]

and so

H(Px, x0) = sup
0≤t≤ξ

ϕ(Px(t), x0)

≤ ε+N2Meωξ +
N1M

ω
[eωξ − 1]

≤ b.

Since (L2, ϕ) is a complete metric space, a standard proof applies to show that

C([0, ξ], L2) = {x : [0, ξ]→ L2| x(t) is m.s. continuous}

is complete. Now we show that B is a closed subset of C([0, ξ], L2). Let {xn} be a sequence in
B such that xn → x ∈ C([0, ξ], L2) as n→∞. Then

ϕ(x(t), x0) ≤ ϕ(x(t), xn(t)) + ϕ(xn(t), x0)

H(x, x0) = sup
0≤t≤ξ

ϕ(x(t), x0)

≤ H(x, xn) +H(xn, x0)

≤ ε+ b

for sufficiently large n and arbitrary ε > 0. So x ∈ B. This implies that B is a closed subset of
C([0, ξ], L2). Therefore B is a complete metric space. Next, we will show that P is a contraction
mapping. For x, y ∈ B

ϕ(Px(t), Py(t)) ≤ ϕ
(
T (t)g(t1, t2, . . . , tp, x(.)), T (t)g(t1, t2, ..., tp, y(.))

)
+

ϕ

(∫ t

0

T (t− s)f(s, x(s))ds,

∫ t

0

T (t− s)f(s, y(s))ds

)
≤ K2Meωtϕ(x, y) +K1M

∫ t

0

eω(t−s)ϕ

(
f(s, x(s)), f(s, y(s))

)
ds

Thus, we obtain

H(Px, Py) ≤ sup
0≤t≤ξ

{
K2Meωtϕ(x, y) +K1M

∫ t

0

eω(t−s)ϕ

(
f(s, x(s)), f(s, y(s))

)
ds

}
≤

(
K2Meωξ +

K1M

ω
[eωξ − 1]

)
H(x, y)

Since K2Meωξ + K1M
ω

[eωξ − 1] < 1, P is a contraction map. Therefore P has a unique fixed
point
Px = x ∈ C([0, ξ], L2), that is

x(t) = T (t)
[
x0 + g(t1, t2, ..., tp, x(.))

]
+

∫ t

0

T (t− s)f(s, x(s))ds.

This completes the proof.
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Theorem 4. Suppose that f , g are the same as in Theorem 3. Let x(t, x0) ,y(t, y0) be solutions of
Eq.(4) to x0, y0, respectively. Then there exist constants c1 and c2 such that

1. H
(
x(., x0), y(., y0)

)
≤ c1ϕ(x0, y0) for any x0, y0 ∈ L2

2. H
(
x(., x0), 0(1,0)

)
≤ c2

(
ϕ(x0, 0(1,0)) +N1 +N3

)
where

ϕ
(
g(t1, t2, ..., tp, x(.)), 0(1,0)

)
≤ N1 and

∫ t

0

e−ωsϕ

(
f(s, 0(1,0)), 0(1,0)

)
≤ N3

Proof. 1. For any t ∈ [0, ξ] we have

ϕ
(
x(t, x0), y(t, y0)

)
≤ ϕ

(
T (t)x0, T (t)y0

)
+ ϕ

(
T (t)g(t1, t2, . . . , tp, x(., x0)), T (t)g(t1, t2, . . . , tp, y(., y0))

)
+ ϕ

(∫ t

0

T (t− s)f(s, x(s, x0))ds,

∫ t

0

T (t− s)f(s, y(s, y0))ds

)
≤Meωt

[
ϕ
(
x0, y0

)
+ ϕ

(
g(t1, t2, . . . , tp, x(., x0)), g(t1, t2, . . . , tp, y(., y0))

)]
+Meωt

∫ t

0

e−ωsϕ

(
f(s, x(s, x0)), f(s, y(s, y0))

)
ds

≤Meωξ
[
ϕ
(
x0, y0

)
+K2ϕ

(
x(., x0), y(., y0)

)]
+K1Meωξ

∫ t

0

e−ωsϕ

(
x(s, x0), y(s, y0)

)
ds

From Gronwall’s inequality, we get

ϕ
(
x(t, x0), y(t, y0)

)
≤Meωξ

[
ϕ
(
x0, y0

)
+K2ϕ

(
x(., x0), y(., y0)

)]
exp

(
K1Meωξ

∫ t

0

e−ωsds

)
≤Meωξ

[
ϕ
(
x0, y0

)
+K2ϕ

(
x(., x0), y(., y0)

)]
exp

(
K1Meωξ

1− e−ωt

ω

)
Thus we have

H
(
x(., x0), y(., y0)

)
≤Meωξ

[
ϕ
(
x0, y0

)
+K2H

(
x(., x0), y(., y0)

)]
exp

(
K1M

eωξ − 1

ω

)
i.e,(

1−K2Meωξ exp

(
K1M

eωξ − 1

ω

))
H
(
x(., x0), y(., y0)

)
≤Meωξ exp

(
K1M

eωξ − 1

ω

)
ϕ
(
x0, y0

)
Consequently, we obtain

H
(
x(., x0), y(., y0)

)
≤

Meωξ exp

(
K1M

eωξ−1
ω

)
(

1−K2Meωξ exp

(
K1M

eωξ−1
ω

))ϕ(x0, y0

)

65



Taking c1 =

Meωξ exp

(
K1M

eωξ−1
ω

)
(

1−K2Meωξ exp

(
K1M

eωξ−1
ω

)) , we obtain H
(
x(., x0), y(., y0)

)
≤ c1ϕ

(
x0, y0

)
.

2. For any t ∈ [0, ξ] we have

ϕ
(
x(t, x0), 0(1,0)

)
≤ ϕ

(
T (t)x0, 0(1,0)

)
+ ϕ

(
T (t)g(t1, t2, . . . , tp, x(., x0)), 0(1,0)

)
+ ϕ

(∫ t

0

T (t− s)f(s, x(s, x0))ds, 0(1,0)

)
≤Meωt

[
ϕ
(
x0, 0(1,0)

)
+ ϕ

(
g(t1, t2, . . . , tp, x(., x0)), 0(1,0)

)]
+Meωt

∫ t

0

e−ωsϕ

(
f(s, x(s, x0)), 0(1,0)

)
ds

≤Meωξ
[
ϕ
(
x0, 0(1,0)

)
+ ϕ

(
g(t1, t2, . . . , tp, x(., x0)), 0(1,0)

)]
+Meωξ

[∫ t

0

e−ωsϕ

(
f(s, x(s, x0)), f(s, 0(1,0))

)
+

∫ t

0

e−ωsϕ

(
f(s, 0(1,0)), 0(1,0)

)]
ds

≤Meωξ
[
ϕ
(
x0, 0(1,0)

)
+ ϕ

(
g(t1, t2, . . . , tp, x(., x0)), 0(1,0)

)]
+Meωξ

[
K1

∫ t

0

e−ωsϕ

(
x(s, x0), 0(1,0)

)
+

∫ t

0

e−ωsϕ

(
f(s, 0(1,0)), 0(1,0)

)]
ds

From Gronwall’s inequality, we get

ϕ
(
x(t, x0), 0(1,0)

)
≤ Meωξ

[
ϕ
(
x0, 0(1,0)

)
+ ϕ

(
g(t1, t2, . . . , tp, x(., x0)), 0(1,0)

)
+

∫ t

0

e−ωsϕ

(
f(s, 0(1,0)), 0(1,0)

)]
exp

(
K1Meωξ

∫ t

0

e−ωsds

)
≤ Meωξ

[
ϕ
(
x0, 0(1,0)

)
+N1 +N3

]
exp

(
K1M

eωξ − 1

ω

)
Taking c2 = Meωξ exp

(
K1M

eωξ−1
ω

)
, we get

H
(
x(., x0), 0(1,0)

)
= sup

0≤t≤ξ
ϕ
(
x(t, x0), 0(1,0)

)
≤ c2

[
ϕ
(
x0, 0(1,0)

)
+N1 +N3

]
This completes the proof.

We consider the following intuitionistic fuzzy differential equations with nonlocal conditions

x(t) = T (t)
[
x0 + g(t1, t2, . . . , tp, x(.))

]
+

∫ t

0

T (t− s)f(s, x(s))ds (5)

xn(t) = T (t)
[
xn,0 + gn(t1, t2, . . . , tp, xn(.))

]
+

∫ t

0

T (t− s)fn(s, xn(s))ds, n ≥ 1. (6)

If Eqs. (5) and (6) satisfy the conditions of Theorem 3, then they have unique solutions x(t) , and
xn(t), t ∈ [0, ξ], respectively.
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Theorem 5. Suppose that f , g are the same as in Theorem 3. If

ϕ
(
xn,0, x0

)
→ 0,

ϕ

(
gn(t1, t2, . . . , tp, x(.)), g(t1, t2, . . . , tp, x(.))

)
→ 0

and

sup
0≤t≤ξ

ϕ

(
fn(t, y), f(t, y)

)
→ 0 as n→∞ for each y ∈ L2,

then

sup
0≤t≤ξ

ϕ

(
xn(t), x(t)

)
→ 0 as n→∞.

Proof. For any t ∈ [0, ξ] we have

ϕ
(
xn(t), x(t)

)
≤ ϕ

(
T (t)xn,0, T (t)x0

)
+ ϕ

(
T (t)gn(t1, t2, . . . , tp, xn(.)), T (t)g(t1, t2, . . . , tp, x(.))

)
+ ϕ

(∫ t

0

T (t− s)fn(s, xn(s))ds,

∫ t

0

T (t− s)f(s, x(s))ds

)
≤ ϕ

(
T (t)xn,0, T (t)x0

)
+ ϕ

(
T (t)gn(t1, t2, . . . , tp, xn(.)), T (t)gn(t1, t2, . . . , tp, x(.))

)
+ ϕ

(
T (t)gn(t1, t2, . . . , tp, x(.)), T (t)g(t1, t2, . . . , tp, x(.))

)
+ ϕ

(∫ t

0

T (t− s)fn(s, xn(s))ds,

∫ t

0

T (t− s)fn(s, x(s))ds

)
+ ϕ

(∫ t

0

T (t− s)fn(s, x(s))ds,

∫ t

0

T (t− s)f(s, x(s))ds

)
.

ϕ
(
xn(t), x(t)

)
≤Meωξ

[
ϕ
(
xn,0, x0

)
+ ϕ

(
gn(t1, t2, . . . , tp, xn(.)), gn(t1, t2, . . . , tp, x(.))

)
+ ϕ

(
gn(t1, t2, . . . , tp, x(.)), g(t1, t2, . . . , tp, x(.))

)
+

∫ t

0

e−ωsϕ

(
fn(s, x(s))ds, f(s, x(s))

)
ds

]
+Meωξ

∫ t

0

e−ωsϕ

(
fn(s, xn(s)), fn(s, x(s))

)
ds

≤Meωξ
[
ϕ
(
xn,0, x0

)
+K2ϕ

(
xn(.), x(.)

)
+ ϕ

(
gn(t1, t2, . . . , tp, x(.)), g(t1, t2, . . . , tp, x(.))

)
+

∫ t

0

e−ωsϕ

(
fn(s, x(s))ds, f(s, x(s))

)
ds

]
+K1Meωξ

∫ t

0

e−ωsϕ

(
xn(s), x(s)

)
ds.
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From Gronwall’s inequality, we get

ϕ
(
xn(t), x(t)

)
≤Meωξ

[
ϕ
(
xn,0, x0

)
+K2ϕ

(
xn(.), x(.)

)
+ ϕ

(
gn(t1, t2, ..., tp, x(.)), g(t1, t2, ..., tp, x(.))

)
+

∫ t

0

e−ωsϕ

(
fn(s, x(s))ds, f(s, x(s))

)
ds

]
exp

(
K1Meωξ

1− eωt

ω

)
.

That is,(
1−K2Meωξ exp

(
K1M

eωξ − 1

ω

))
sup

0≤t≤ξ
ϕ
(
xn(t), x(t)

)
≤Meωξ

[
ϕ
(
xn,0, x0

)
+ ϕ

(
gn(t1, t2, . . . , tp, x(.)), g(t1, t2, . . . , tp, x(.))

)
+ sup

0≤t≤ξ

∫ t

0

e−ωsϕ

(
fn(s, x(s)), f(s, x(s))

)
ds

]
exp

(
K1M

eωξ − 1

ω

)
(7)

And

ϕ

(
fn(s, x(s)), f(s, x(s))

)
≤ ϕ

(
fn(s, x(s)), fn(s, 0(1,0))

)
+ ϕ

(
fn(s, 0(1,0)), f(s, 0(1,0))

)
+ϕ

(
f(s, 0(1,0)), f(s, x(s))

)
≤ 2K1ϕ

(
x(s), 0(1,0)

)
+ sup

0≤t≤ξ
ϕ

(
fn(s, 0(1,0)), f(s, 0(1,0))

)
≤ 2K1c2

(
ϕ(x0, 0(1,0)) +N1 +N3

)
+ 1

as soon as n is large enough, where we used 2. of Theorem 4.
Hence, using the dominated convergence theorem in (7), we obtain the conclusion of the

theorem.
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