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1. Introduction

After the introduction of fuzzy sets by Zadeh [16] in 1965 and fuzzy topology by
chang [5] in 1967. Several researches were conducted on the generalizations of the notions
of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets was introduced by
Atanassov [1] as a generalization of fuzzy sets . In the last 20 years various concepts of
fuzzy mathematics have been extended for intuitionistic fuzzy sets. In 1997 Coker [6]
introduced the concept of intuitionistic fuzzy topological spaces. Recently many fuzzy
topological concepts such as fuzzy compactness [8], fuzzy connectedness [15], fuzzy
separation axioms [4], fuzzy metric spaces [14], fuzzy continuity [9] fuzzy multifunctions
[11] have been generalized for intuitionistic fuzzy topological spaces. In [13] the authores
of this paper extend the concepts of fuzzy g-closed sets due to Thakur and Malviya [12] in
intuitionistic fuzzy topological space.In the present paper we introduce and study the
concepts of intuitionistic fuzzy g-continuous mappings in intuitionistic fuzzy topological
space.

2.Preliminaries

Definition 2.1: [1] Let X be a nonempty fixed set. An intuitionistic fuzzy set A in X is an
object having the form

A={<x,1a(x), TA()> : XX }
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where the functions pa:X—7 and ya: X—1 denote the degree of membership (namely
na(x)) and the degree of nonmembership (namely ya(x)) of each element xeX to the set A,
respectively, and 0 <pa(x)+ ya(x) < 1 for each xe X.

Definition 2.2: [1] Let X be a nonempty set and the intuitionistic fuzzy sets A and B be in
the form A = {<x, pa(x), ya(x)> : x € X}, B = {<x, us(x), ys(x)> : x € X} and let {A;:i €
J} be an arbitrary family of intuitionistic fuzzy sets in X. Then

(a) AcBif Vx € X [pa(x) < us(x) and ya(x) > y(x)];

(b) A=BifAcBand BCA;

(€) A™= {<x, ya(x), pa(x)> : x € X};

(d) N A= {<x, AHAIX), VYai(X)> @ x € X5

) U Aj = {<x, VUai(X), AYAi(X)> 1 X € X}

gf) 0={<x,0,1>:xeX}and 1 = {<x, 1,0>:x € X};
Definition 2.3 [6]: Two intuitionistic fuzzy sets A and B of X said to be g-coincident (AqB
for short) if and only if there exits an element xeX such that pa(x) > yp(x) or ya(x) <

HB(X).

Definition 2.4[6]: Let (X, J) be an intuitionistic fuzzy topological space and
A = <x, pa(x),ya(x)> be an intuitionistic fuzzy set in X. Then the fuzzy interior and fuzzy
closure of 4 are defined by

cl(4) = n{K : K is an intuitionistic fuzzy closed set in X and 4 < K},

int(4) = U{G : G is an intuitionistic fuzzy open set in X and G c K}.

Definition 2.5 [7 ] : Let X be a nonempty set and ceX a fixed element in X. If ae(0,1]
and B€[0,1) are two real numbers such that o+p<1 then

c(a,B) = < X,Cq, C1p > is called an intuitionistic fuzzy point in X, where o denotes the
degree of membership of c(a,p), and B denotes the degree of nonmembership of c(a.,p).

Definition 2.6 [6]: An intuitionistic fuzzy topology on a nonempty set X is a family 3 of
intuitionistic fuzzy sets in X satisfy the following axioms:

(Tl) 05 le S,

(Tz) GlﬂGz e 3 for any Gl, Gz € S,

(T3) UG € 3 for any arbitrary family { Gi: i € J}< 3.
In this case the pair (X, 3J) is called an intuitionistic fuzzy topological space and each
intuitionistic fuzzy set in J is known as an intuitionistic fuzzy open set in X.

Definition 2.7 [6]: The complement A° of an intuitionistic fuzzy open set A in an
intuitionistic fuzzy topological space (X, J) is called an intuitionistic fuzzy closed set in
X.

Definition 2.8[6]: Let X and Y be two nonempty sets and /- X — Y be a function.Then
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(a) If B = {<y, us(y), y8(»)> : ¥y € Y}is an intuitionistic fuzzy set in Y, then the preimage of
B under f'denoted by /~'(B), is the IFS in X defined by

£B) = <x, £ (ue)@), £ (rB)(x)> : x € X}

(b) If A = {<x, Aa(x), va(x)> : x € X}is an intuitionistic fuzzy set in X, then the image of A
under f'denoted by f{A) is the intuitionistic fuzzy set in ¥ defined by

JA) = {2, f (A)3), f(vaA))> 1y € Y}

where f(va) = 1 — f(1- vp).

Definition 2.9[9] : Let (X,3) and (Y,®) be two intuitionistic fuzzy topological spaces and
let £ X—Y be a function. Then f'is said to be intuitionistic fuzzy continuous if and only if
the preimage of each intuitionistic fuzzy open set in Y is an intuitionistic fuzzy open set in
X.

Definition 2.10 [8] : A family { Gj: iea} of intuitionistic fuzzy sets in X is said to be an
intuitionistic fuzzy open cover of X if U{ Gj: 1eA} = 1 and a finite subfamily

of an intuitionistic fuzzy open cover of X which also an intuitionistic fuzzy open cover of
X is called a finite subcover { Gj: 1eA}.

Definition 2.11 [8] :An intuitionistic fuzzy topological space (X,3) is called fuzzy
compact if each intuitionistic fuzzy open cover has a finite subcover.

Definition 2.12[13]: An intuitionistic fuzzy set A of a intuitionistic fuzzy topological space
(X,3J) is called an intuitionistic fuzzy generalized closed (intuitionistic fuzzy g-closed) if
cl(A) < O whenever A < O and O is intuitionistic fuzzy open.

Definition 2.13[13]:Complement of an intutionistic fuzzy g-closed set is called
intutionistic fuzzy g-open set.

Remark 2.1 [13]: Every intuitionistic fuzzy closed set (intutionistic fuzzy open set) is
intuitionistic fuzzy g-closed(intutionistic fuzzy open set) but its converse may not be true.

Throughout this paper f: (X, I) = (Y, o) denotes a mapping from an intuitionistic
fuzzy topological space (X, J) to another intuitionistic topological space (Y, o).

3.Intuitionistic Fuzzy g-Continuous Mapping
Definition 3.1: A mapping f: (X, J) — (Y, o) is said to be intuitionistic fuzzy
g-continuous if the inverse image of every intuitionistic fuzzy closed set of Y is

intuitionistic fuzzy g-closed in X.

Remark 3.1: Every intuitionistic fuzzy continuous mapping is intuitionistic fuzzy g-
continuous, but the converse may not be true. For,

Example 3.1: Let X = {a, b}, Y = (x, y} and the intuitionistic fuzzy set U and V are
defined as follows:
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U = <x, (0.5/a, 0.6/b), (0.4/a, 0.4/b)>

V =<x, (0.3/a, 0.4/b), (0.6/a, 0.6/b)>
Let 3=1{0,U, 1} and o = {0, V, 1} be intuitionistic fuzzy topologies on X

and Y respectively. Then the mapping f: (X, J) — (Y, o) defined by f(a) = x and f(b) =y
1s intuitionistic fuzzy g-continuous but not intuitionistic fuzzy continuous.

Theorem 3.1: A mapping f : (X, J) — (Y, o) is intuitionistic fuzzy g-continuous if and
only if the inverse image of every intuitionistic fuzzy open set of Y is intuitionistic fuzzy
g-open in X.

Proof: 1t is obvious because f ' (U°) = (f (U))° for every intuitionistic fuzzy set U of Y.

Theorem 3.2: If f : (X, 3) = (Y, o) is intuitionistic fuzzy g-continuous then for each
intuitionistic fuzzy point c(a, B) of X and each fuzzy open set V, f(c(a, B)) < V there exist
a intuitionistic fuzzy g-open set U such that c(a, B) < U and f(U) < V.

Proof: Let c(a, B) be a intuitionistic fuzzy point of X and V be a intuitionistic fuzzy open
set such that c(a, p) = V, put U = f (V) then by hypothesis U is intuitionistic fuzzy g-
open set of X such that c(a, ) < U and f(U) = f(f vy cV.

Theorem 3.3: If f : (X, J) — (Y, o) is fuzzy g-continuous, then for each intuitionistic
fuzzy point c(a, B) in X and each intuitionistic fuzzy open set V of Y such that c(a, )4V,
there exists c(a, B ) in an intuitionistic g-open set U of X such that c(a, B)qU and f(U)
V.

Proof: Let c(a, B) be an intuitionistic fuzzy point of X and V be an intuitionistic fuzzy
open set of Y such that f(c(a, B))qV. Put U = f (V). Then by hypothesis U is an
intuitionistic fuzzy g-open set of X such that c(a., B)qU and f(U) = f(f V) cV.

Definition 3..2: Let (X, 3J) be an intuitionistic fuzzy topological space. The generalized

closure of a intuitionistic fuzzy set A of X denoted by gcl(A) is the intersection of all
intuitionistic fuzzy g-closed sets of X which contains A.

Remark: 3. 2: 1t is clear that, A < gcl(A) < cl(A) for any intuitionistic fuzzy set A of X.

Theorem 3. 4: If f : (X, J) — (Y, o) is intuitionistic fuzzy g-continuous, then f(gcl(A) <
cl(f(A)) for every intuitionistic fuzzy set A of X.

Proof: Let A be an intuitionistic fuzzy set of X. Then cl(f(A)) is an intuitionistic fuzzy
closed set of Y. Since f is fuzzy g-continuous f "'(cl(f(A))) is intuitionistic fuzzy g-closed
in X. Clearly A c £ '(cl(f(A))). Therefore

gcl(A) < gel(f ' (cl(f(A))) = £ ' (cI(f(A))). Hence f(gcl(A)) < cl(f(A)).

Remark 3. 3: The converse of Theorem 3. 4 may not be true. For,
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Example 3.2: Let X = {a, b, ¢}, Y = {X, y, z} and the intuitionistic fuzzy set U and V are
defined as:

U =<x, (1/a, 0/b, 0/c), (0/a, 1/b, 1/c)>

V =<x, (1/x, 0/y, 1/z), (0/x, 1/y, 0/z)>

Let 3=1{0,U, 1} and o = {0, V, 1} be intuitionistic fuzzy topologies on X
and Y respectively and f: (X, 3) - (Y, o) be a mapping defined by f(a)=y,

f(b) = x, f(c) = z. Then f(gcl(A)) < cl(f(A)) holds for every intuitionistic fuzzy set A of X,
but f is not fuzzy g-continuous.

Definition 3.3: An intuitionistic fuzzy topological space (X, J) is said to be intuitionistic
fuzzy T, if every intuitionistic fuzzy g-closed set in X is intuitionistic fuzzy closed in X.

Theorem 3.5: A mapping f from an intuitionistic fuzzy T),-space (X, J) to an intuitionistic
fuzzy topological space (Y, o) is intuitionistic fuzzy continuous if and only if it is
intuitionistic fuzzy g-continuous.

Proof: Obvious.

Remark 3.4: The composition of two intuitionistic fuzzy g-continuous mappings may not
be intuitionistic fuzzy g-continuous. For,

Example 3.3: Let X = {a, b}, Y =(x, y} and Z = {p, q} and the fuzzy sets U, V, and W are
defined as follows:

U =<x, (0.5/a, 0.7/b), (0.5/a, 0.3/b)>
V =<x, (0.3/a, 0.2/b), (0.7/a, 0.8/b)>

W =<x, (0.6/a, 0.4/b), (0.4/a, 0.6/b)>

Lett={0,U, 1},5=1{0,V, 1},and n = {0, W, 1} be intuitionistic fuzzy
topologies on X, Y and Z respectively. Let the mapping f: (X, I) = (Y, o) be defined by
f(a) =x, f(b) =y and the mapping g : (Y, o) = (Z, n) be defined by g(x) = p and g(y) =q.

Then f and g are intuitionistic fuzzy g-continuous but gof is not intuitionistic fuzzy g-
continuous.

Theorem 3. 6: If f: (X, 3) > (Y, o) is intuitionistic fuzzy g-continuous and g: (Y,
6) — (Z, m) is intutionistic fuzzy continuous. Then gof : (X, I) — (Z, n) is intutionistic

fuzzy g-continuous.

Proof: If A is intuitionistic fuzzy closed in Z, then f '(A) is intuitionistic fuzzy closed in Y
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because g is intuitionistic fuzzy continuous. Therefore
(goN)! (A) = f (g'(A)) is intuitionistic fuzzy g-closed in X. Hence gof is intuitionistic
fuzzy g-continuous.

Theorem 3.7: If £ (X, 3)—(Y, o) and g (Y, 0)—>(Z, n) are two intutionistic fuzzy g-
continuous mappings and (Y, o) is intuitionistic fuzzy T;, space then
gof : (X, I)— (Z, ) is intuitionistic fuzzy g-continuous.

Proof: Obvious.

Definition 3.4: An intuitionistic fuzzy topological space (X,3J) is said to be intuitionistic
fuzzy GO- compact if every intuitionistic fuzzy g-open cover of X has a finite subcover.

Theorem 3.8 : Intuitionistic fuzzy g-continuous image of an intuitionistic fuzzy GO-
compact space is intuitionistic fuzzy compact.

Proof : Let f: (X, 3) > (Y, o) be an intuitionistic fuzzy g-continuous map from an
intuitionistic fuzzy GO-compact space (X, J) onto an intuitionistic fuzzy topological space
(Y, o). Let {Aj: iean} be an intuitionistic fuzzy g-open cover of Y then {f 1(AQ) 1 i enlis
an intuitionistic fuzzy g-open cover of X. Since X is intuitionistic fuzzy GO-compact it
has finite intuitionistic fuzzy subcover say

{f (A),......... f "'(Ay)}.Since f is onto {Aj, ...... ,Aq} is an intuitionistic fuzzy open
cover of Y and so (Y,o0) is intuitionistic fuzzy compact.

Definition 3.5 : An intuitionistic fuzzy topological space X is called intuitionistic fuzzy
GO-connected if there is no proper intuitionistic fuzzy set of X which is both intuitionistic
fuzzy g-open and intuitionistic fuzzy g-closed.

Remark 3.5: Every intuitionistic fuzzy GO-connected space is intuitionistic fuzzy Cs-
connected [15], but the converse may not be true. For,

Example 3. 4 Let X = {a,b}, U=<x,(.5/a,.7/b),(.5/a,.3/b)>,

and 3 = {0,U,1} be an intuitionistic topology on X, then (X, J) is intutionistic

fuzzy connected but not fuzzy GO-connected.

Theorem 3.9: An intuitionistic fuzzy Tj,-space is intuitionistic fuzzy Cs- connected if and
only if it is intuitionistic fuzzy GO-connected.

Proof: Obvious.

Theorem 3. 10 : If f: (X, 3) - (Y, o) is an intuitionistic fuzzy g-continuous surjection
and X is intuitionistic fuzzy GO-connected then Y is intuitionistic fuzzy Cs-connected.

Proof : Suppose Y is not intuitionistic fuzzy connected. Then there exists a proper
intuitionistic fuzzy set G of Y which is both intuitionistic fuzzy open and intuitionistic
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fuzzy closed. Therefore f (G) is a proper intuitionistic fuzzy closed and intuitionistic
fuzzy open set of X, because f intuitionistic fuzzy g-continuous surjection. Hence X is not
intuitionistic fuzzy GO-connected.
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