On the embedding of continuous states

Beloslav Riečan ${ }^{1,2}$ and Jaroslav Považan ${ }^{1}$
${ }^{1}$ Faculty of Natural Sciences, Matej Bel University
Tajovského 40, Banská Bystrica, Slovakia
${ }^{2}$ Mathematical Institut, Slovak Academy of Sciences
Štefánikova 49, Bratislava, Slovakia
e-mail: Beloslav.Riecan@umb.sk

Received: 19 September 2016
Revised: 20 October 2016
Accepted: 27 October 2016

Abstract

There is known the assertion that any state on a family \mathcal{F} of IF-events can be embedded to an MV-algebra generated by \mathcal{F}. In the contribution the assertion is extended for non-additive only upper and lower continuous mappings.

Keywords: Continuous states, Embedding.
AMS Classification: 03E72.

1 Preliminaries

As usually the $I F$-set is a pair of mappings $A=\left(\mu_{A}, \nu_{A}\right): \Omega \rightarrow[0,1]^{2}$ such that $\mu_{A}+\nu_{A} \leq 1$. IF A, B are $I F$-sets, $A=\left(\mu_{A}, \nu_{A}\right), B=\left(\mu_{B}, \nu_{B}\right)$, then we write $A \leq B \Longleftrightarrow \mu_{A} \leq \mu_{B}, \nu_{A} \geq \nu_{B}$.
If $A_{n}=\left(\mu_{A_{n}}, \nu_{A_{n}}\right)$ are $I F$-sets, and $A=\left(\mu_{A}, \nu_{A}\right)$ is an $I F$-set, then we write
$A_{n} \nearrow A \Longleftrightarrow \mu_{A_{n}} \nearrow \mu_{A}, \nu_{A_{n}} \searrow \nu_{A}$,
$A_{n} \searrow A \Longleftrightarrow \mu_{A_{n}} \searrow \mu_{A}, \nu_{A_{n}} \nearrow \nu_{A}$.
Definition 1. A family \mathcal{F} of $I F$-sets on a space Ω will be called continuous if the following two conditions hold:
(i) $A_{n} \in \mathcal{F}(n=1,2, \ldots), A_{n} \nearrow A \Longrightarrow A \in \mathcal{F}$,
(ii) $A_{n} \in \mathcal{F}(n=1,2, \ldots), A_{n} \searrow A \Longrightarrow A \in \mathcal{F}$.

Definition 2. Let \mathcal{F} be a continuous family of $I F$-sets, and $\left(0_{\Omega}, 1_{\Omega}\right) \in \mathcal{F},\left(1_{\Omega}, 0_{\Omega}\right) \in \mathcal{F}$. A maping $m: \mathcal{F} \rightarrow[0,1]$ will be called continuous state on \mathcal{F}, if the following conditions holds:
(i) $m\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=0, m\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1$,
(ii) $A_{n} \in \mathcal{F}, A_{n} \nearrow A \Longrightarrow m\left(A_{n}\right) \nearrow m(A)$,
(iii) $A_{n} \in \mathcal{F}, A_{n} \searrow A \Longrightarrow m\left(A_{n}\right) \searrow m(A)$.

A mapping $m: \mathcal{F} \rightarrow[0,1]$ is weakly additive, if $m\left(\left(\mu_{A}, \nu_{A}\right)\right)+m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)=m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)\right.$
for any $A \in \mathcal{F}$.
Example. For $A, B \in \mathcal{F}, A=\left(\mu_{A}, \nu_{A}\right), B=\left(\mu_{B}, \nu_{B}\right)$ define $A \odot B=\left(\left(\mu_{A}+\mu_{B}-1\right) \vee 0,\left(\nu_{A}+\right.\right.$ $\left.\left.\nu_{B}\right) \wedge 1\right), A \oplus B=\left(\left(\mu_{A}+\mu_{B}\right) \wedge 1,\left(\nu_{A}+\nu_{B}-1\right) \vee 0\right)$. Weakly additive mapping need not be additive, hence it need not to satisfy the inclusion

$$
A \odot B=\left(0_{\Omega}, 1_{\Omega}\right) \Longrightarrow m(A \oplus B)=m(A)+m(B)
$$

E.g. let $\Omega=[0,1], m\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1, m(A)=0$ for $A \neq\left(1_{\Omega}, 0_{\Omega}\right)$. Let $A=B=\left(\left(\frac{1}{2}\right)_{\Omega},\left(\frac{1}{2}\right)_{\Omega}\right)$. Then $A \odot B=\left(0_{\Omega}, 1_{\Omega}\right)$ but

$$
m(A \oplus B)=m\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1 \neq 0+0=m(A)+m(B)
$$

2 Embedding

Definition 3. Let \mathcal{F} be a continuous family, \mathcal{M} be the family of all pairs $\left(\mu_{A}, \nu_{A}\right): \Omega \rightarrow[0,1]^{2}$ such that $\left(\mu_{A}, 0_{\Omega}\right) \in \mathcal{F}$, and $\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right) \in \mathcal{F}$. We shall call \mathcal{M} the MV-algebra generated by \mathcal{F}.

Theorem. Let \mathcal{F} be a continuous family, \mathcal{M} be the MV-algebra generated by \mathcal{F}. Let $m: \mathcal{F} \rightarrow$ $[0,1]$ be a continuous state on \mathcal{F}. Then there exists a maping $\bar{m}: \mathcal{M} \rightarrow[0,1]$ with the following properties:
(i) $\bar{m}\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=0, \bar{m}\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1$,
(ii) $A_{n} \nearrow A \Longrightarrow \bar{m}\left(A_{n}\right) \nearrow \bar{m}(A)$,
(iii) $A_{n} \searrow A \Longrightarrow \bar{m}\left(A_{n}\right) \searrow \bar{m}(A)$.

If m is weakly additive, then \bar{m} is an extension of m.
Proof. Define for any $A=\left(\mu_{A}, \nu_{A}\right)$

$$
\bar{m}(A)=m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right) .
$$

Since $\mu_{A} \geq 0_{\Omega}$, and $0_{\Omega} \leq 1-\nu_{A}$ we have $m\left(\left(\mu_{A}, 0_{\Omega}\right)\right) \geq m\left(\left(0_{\Omega}, 1-\nu_{A}\right)\right)$, hence

$$
\bar{m}\left(\left(\mu_{A}, \nu_{A}\right)\right)=m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right) \geq 0
$$

On the other hand,

$$
m\left(\left(\mu_{A}, 0_{\Omega}\right)\right) \leq 1 \leq 1+m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right)
$$

hence

$$
\bar{m}\left(\left(\mu_{A}, \nu_{A}\right)\right)=m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right) \leq 1 .
$$

So actually we have obtained a mapping $\bar{m}: \mathcal{M} \rightarrow[0,1]$.

Evidently

$$
\begin{gathered}
\bar{m}\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=m\left(\left(0_{\Omega}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 0_{\Omega}\right)\right)=0, \\
\bar{m}\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=m\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 1_{\Omega}-0_{\Omega}\right)\right)=1-0=1 .
\end{gathered}
$$

Let $A_{n} \in \mathcal{M}, A_{n}=\left(\mu_{A_{n}}, \nu_{A_{n}}\right) \nearrow\left(\mu_{A}, \nu_{A}\right)=A$. Then

$$
\left(\mu_{A_{n}}, 0_{\Omega}\right) \nearrow\left(\mu_{A}, 0_{\Omega}\right),\left(0_{\Omega}, 1_{\Omega}-\nu_{A_{n}}\right) \searrow\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right) .
$$

Therefore,

$$
\bar{m}\left(A_{n}\right)=m\left(\left(\mu_{A_{n}}, 0_{\Omega}\right)\right)-m\left(0_{\Omega}, 1_{\Omega}-\nu_{A_{n}}\right) \nearrow m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right)=\bar{m}(A) .
$$

Analogously it can be proved the implication

$$
A_{n} \searrow A \Longrightarrow \bar{m}\left(A_{n}\right) \searrow \bar{m}(A) .
$$

Let m be weakly additive, and let $A=\left(\mu_{A}, \nu_{A}\right) \in \mathcal{F}$. Since $\left(\mu_{A}, \nu_{A}\right) \odot\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)=$ $\left(0_{\Omega}, 1_{\Omega}\right)$, we have

$$
m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)=m\left(\left(\mu_{A}, \nu_{A}\right) \oplus\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right)=m\left(\left(\mu_{A}, \nu_{A}\right)\right)+m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right),
$$

hence

$$
m\left(\left(\mu_{A}, \nu_{A}\right)\right)=m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 1_{\Omega}-\nu_{A}\right)\right)=\bar{m}\left(\left(\mu_{A}, \nu_{A}\right)\right) .
$$

Actually \bar{m} is an extension of m.

References

[1] Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Aplications. Physica -Verlag, Heidelberg.
[2] Atanassov, K. T. (2012) On Intuitionistic Fuzzy Sets. Springer, Berlin.
[3] Kluvancová, D. On non-additive IF states (in preparation).
[4] Riečan, B. (2015) Embedding of IF states to MV-algebras. In: Intelligent Systems 2014, Proc. 7th IEEE Int. Conf. Springer, 157-162.
[5] Riečan, B., \& Samuelčík, K. On non-additive probability measures. Mathematica Slovaca (to appear).

