Properties of the intuitionistic fuzzy implication \rightarrow_{188}

Krassimir Atanassov ${ }^{1}$, Eulalia Szmidt ${ }^{2}$, Janusz Kacprzyk ${ }^{2}$ and Nora Angelova ${ }^{3}$
${ }^{1}$ Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria, and
Intelligent Systems Laboratory, Prof. Asen Zlatarov University
1, Yakim Yakimov Blvd., Burgas-8010, Bulgaria e-mail: krat@bas.bg
${ }^{2}$ Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
and
Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland e-mails: \{szmidt,kacprzyk\}@ibspan.waw.pl
${ }^{3}$ Department of Computer Informatics Faculty of Mathematics and Informatics University of Sofia "St. Kliment Ohridski"
5, James Bourchier Blvd., Sofia-1164, Bulgaria

In memory of Prof. Lotfi Zadeh (1921-2017)

Received: 27 October 2017
Accepted: 26 November 2017

Abstract. In [5], the new intuitionistic fuzzy implication \rightarrow_{188} is defined and some of its properties are studied. Here, new propertirs of the new implication are studied.
Keywords: Implication, Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
AMS Classification: 03E72.

1 Introduction

In [5], the intuitionistic fuzzy implication \rightarrow_{188} is introduced and some of its properties are studied. Here, we continue the previous research.

Initially, we remind that in intuitionistic fuzzy logic (see [1, 2]), each proposition, variable or formula is evaluated with two degrees - "truth degree" or "degree of validity" $\mu(p)$ and "falsity degree" or "degree of non-validity" $\nu(p)$. Thus, to each one of these objects, e.g., p, two real numbers, $\mu(p)$ and $\nu(p)$, are assigned with the following constraint:

$$
\mu(p), \nu(p) \in[0,1] \text { and } \mu(p)+\nu(p) \leq 1 .
$$

Let

$$
\pi(p)=1-\mu(p)-\nu(p) .
$$

The above function determines the degree of uncertainty (indeterminacy).
Let an evaluation function V be defined over a set of propositions \mathcal{S}, in such a way that for $p \in \mathcal{S}:$

$$
V(p)=\langle\mu(p), \nu(p)\rangle .
$$

Hence the function $V: \mathcal{S} \rightarrow[0,1] \times[0,1]$ gives the truth and falsity degrees of all elements of \mathcal{S}.

We assume that the evaluation function V assigns to the logical truth T

$$
V(T)=\langle 1,0\rangle,
$$

and to the logical falsity F

$$
V(F)=\langle 0,1\rangle .
$$

Here, we define only the operations "negation", "disjunction" and "conjunction", originally introduced in [1, 2], that have classical logic analogues, as follows:

$$
\begin{gathered}
V\left(\neg_{1} p\right)=\langle\nu(p), \mu(p)\rangle, \\
V(p \vee q)=\langle\max (\mu(p), \mu(q)), \min (\nu(p), \nu(q))\rangle, \\
V(p \wedge q)=\langle\min (\mu(p), \mu(q)), \max (\nu(p), \nu(q))\rangle .
\end{gathered}
$$

Below, for simplicity, we write \neg instead of \neg_{1}.
For the needs of the discussion below, we define the notions of Intuitionistic Fuzzy Tautology (IFT, see, e.g. [1, 2]) and tautology.

Formula A is an IFT if and only if (iff) for every evaluation function V, if $V(A)=\langle a, b\rangle$, then,

$$
a \geq b
$$

while it is a (classical) tautology if and only if for every evaluation function V, if $V(A)=\langle a, b\rangle$, then,

$$
a=1, b=0 .
$$

Below, when it is clear, we will omit notation " $V(A)$ ", using directly " A " instead of the intuitionistic fuzzy evaluation of A.

In [3], we called the object $\langle\mu(p), \nu(p)\rangle$ an Intuitionistic Fuzzy Pair (IFP).
For brevity, in a lot of places, instead of the $\operatorname{IFP}\langle\mu(A), \nu(A)\rangle$ we will use the $\operatorname{IFP}\langle a, b\rangle$, where $a, b \in[0,1]$ and $a+b \leq 1$.

It is also suitable, if $\langle a, b\rangle$ and $\langle c, d\rangle$ are IFPs, to have

$$
\langle a, b\rangle \leq\langle c, d\rangle \text { iff } a \leq c \text { and } b \geq d
$$

and

$$
\langle a, b\rangle \geq\langle c, d\rangle \text { iff } a \geq c \text { and } b \leq d .
$$

If an IFP is an IFT, we call it Intuitionistic Fuzzy Tautological Pair (IFTP) and if it is a tautology - Tautological Intuitionistic Fuzzy Pair (TIFP).

In [5], the intuitionistic fuzzy implication \rightarrow_{188} is defined by:

$$
x \rightarrow_{188} y=\neg x \vee y=\langle\min (b, c), a d\rangle .
$$

2 Main results

Here, we show that the implication \rightarrow_{188} generates a new negation with the form

$$
\neg_{54}\langle a, b\rangle=\langle a, b\rangle \rightarrow_{188}\langle 0,1\rangle=\langle 0, a\rangle .
$$

For brevity, below we will write \rightarrow instead of \rightarrow_{188}.
In [5], it is checked the validity of G.F. Rose's formula $[13,15]$ that has the form:

$$
\left(\left(\neg \neg x \rightarrow_{188} x\right) \rightarrow_{188}(\neg \neg x \vee \neg x)\right) \rightarrow_{188}(\neg \neg x \vee \neg x)
$$

when negation is the classical negation \neg_{1}. Now, we prove
Theorem 1. Rose's formula is an IFT for \neg_{54}.
Proof. Sequentially, we obtain:

$$
\begin{gathered}
\left(\left(\neg_{54} \neg_{54} x \rightarrow_{188} x\right) \rightarrow_{188}\left(\neg_{54} \neg_{54} x \vee \neg_{54} x\right)\right) \rightarrow_{188}\left(\neg_{54} \neg_{54} x \vee \neg_{54} x\right) \\
=\left(\left(\langle 0,0\rangle \rightarrow_{188}\langle a, b\rangle\right) \rightarrow_{188}(\langle 0,0\rangle \vee\langle 0, a\rangle)\right) \rightarrow_{188}(\langle 0,0\rangle \vee\langle 0, a\rangle) \\
=\left(\langle 0,0\rangle \rightarrow_{188}(\langle 0,0\rangle)\right) \rightarrow_{188}\langle 0,0\rangle \\
\left.=\langle 0,0\rangle \rightarrow_{188}\langle 0,0\rangle\right)=\langle 0,0\rangle .
\end{gathered}
$$

that is an IFTP.
Second, we check C. A. Meredith's axiom (see, e.g., [12]).
Theorem 2. For every five formulas A, B, C, D and $E, C . A$. Meredith's axiom

$$
((((A \rightarrow B) \rightarrow(\neg C \rightarrow \neg D)) \rightarrow C) \rightarrow E) \rightarrow((E \rightarrow A) \rightarrow(D \rightarrow A))
$$

is an IFT for \neg_{1} and for \neg_{54}.

Proof. Let $V(A)=\langle a, b\rangle, V(B)=\langle c, d\rangle, V(C)=\langle e, f\rangle, V(D)=\langle g, h\rangle, V(E)=\langle i, j\rangle$, where $a, b, \ldots, j \in[0,1]$ and $a+b \leq 1, c+d \leq 1, e+f \leq 1, g+h \leq 1$ and $i+j \leq 1$. Then

$$
\begin{gathered}
V\left(\left(\left(\left((A \rightarrow B) \rightarrow\left(\neg_{54} C \rightarrow \neg_{54} D\right)\right) \rightarrow C\right) \rightarrow E\right) \rightarrow((E \rightarrow A) \rightarrow(D \rightarrow A))\right) \\
=((((\langle a, b\rangle \rightarrow\langle c, d\rangle) \rightarrow(\langle 0, e\rangle \rightarrow\langle 0, g\rangle)) \rightarrow\langle e, f\rangle) \rightarrow\langle i, j\rangle) \\
\rightarrow((\langle i, j\rangle \rightarrow\langle a, b\rangle) \rightarrow(\langle g, h\rangle \rightarrow\langle a, b\rangle)) \\
=(((\langle\min (b, c), a d\rangle \rightarrow\langle 0,0\rangle) \rightarrow\langle e, f\rangle) \rightarrow\langle i, j\rangle) \rightarrow(\langle\min (a, j), b i\rangle \rightarrow\langle\min (a, h), b g\rangle) \\
=((\langle 0,0\rangle \rightarrow\langle e, f\rangle) \rightarrow\langle i, j\rangle) \rightarrow\langle\min (b i, a, h), \min (a, j) b g\rangle \\
=(\langle 0,0\rangle \rightarrow\langle i, j\rangle) \rightarrow\langle\min (b i, a, h), \min (a, j) b g\rangle \\
=(\langle 0,0\rangle \rightarrow\langle i, j\rangle) \rightarrow\langle\min (b i, a, h), \min (a, j) b g\rangle \\
=\langle 0,0\rangle .
\end{gathered}
$$

The first case is proved by analogy.
The next assertions are proved by the same manner so we will omit their proofs.
The axioms of the intuitionistic logic (see, e.g., [14]) are the following.
(IL1) $A \rightarrow A$,
(IL2) $A \rightarrow(B \rightarrow A)$,
(IL3) $A \rightarrow(B \rightarrow(A \wedge B))$,
(IL4) $(A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C))$,
(IL5) $(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$,
(IL6) $A \rightarrow \neg \neg A$,
(IL7) $\neg(A \wedge \neg A)$,
(IL8) $(\neg A \vee B) \rightarrow(A \rightarrow B)$,
$($ IL9) $\neg(A \vee B) \rightarrow(\neg A \wedge \neg B)$,
(IL10) $(\neg A \wedge \neg B) \rightarrow \neg(A \vee B)$,
(IL11) $(\neg A \vee \neg B) \rightarrow \neg(A \wedge B)$,
(IL12) $(A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A)$,
(IL13) $(A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A)$,
(IL14) $\neg \neg \neg A \rightarrow \neg A$,
(IL15) $\neg A \rightarrow \neg \neg \neg A$,
$($ IL16) $\neg \neg(A \rightarrow B) \rightarrow(A \rightarrow \neg \neg B)$,
(IL17) $(C \rightarrow A) \rightarrow((C \rightarrow(A \rightarrow B)) \rightarrow(C \rightarrow B))$.
Theorem 3. All axioms of the intuitionistic logic are IFTs for \rightarrow_{188} and for \neg_{54}.
The axioms of A. Kolmogorov (see, e.g., [16]) are the following.
$(\mathrm{K} 1) A \rightarrow(B \rightarrow A)$,
(K2) $(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B))$,
(K3) $(A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C))$,
$(\mathrm{K} 4)(B \rightarrow C) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$,
(K5) $(A \rightarrow B) \rightarrow((A \rightarrow \neg B) \rightarrow \neg A)$.
Theorem 4. All axioms of A. Kolmogorov are IFTs for \rightarrow_{188} and for \neg_{54}.
The axioms of J. Łukasiewicz and A. Tarski (see, e.g., [16]) are the following.

$$
\begin{aligned}
& \text { (LT1) } A \rightarrow(B \rightarrow A), \\
& \text { (LT2) }(A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C)), \\
& \text { (LT3) } \neg A \rightarrow(\neg B \rightarrow(B \rightarrow A)), \\
& \text { (LT4) }((A \rightarrow \neg A) \rightarrow A) \rightarrow A .
\end{aligned}
$$

Theorem 5. All axioms of J. Łukasiewicz and A. Tarski are IFTs for \rightarrow_{188} and for \neg_{54}.

3 Conclusion

In a next reseach, we will study validity of Klir and Yuan's axioms for the intuitionistc fuzzy implications \rightarrow_{187} (introduced in [4]) and \rightarrow_{188} and other properties of these implications. Meantime, in [7], another implication - \rightarrow_{189}, related to the two our implications, was introduced and in [8] its properties had been studied. All these research show that intuitionistc fuzzy sets and logics in the sense, described in [2] correspond to the ideas of Brouwer's intuitionism (see [9, 10, 11]).

Acknowledgements

The authors are thankful for the support provided by the Bulgarian National Science Fund under Grant Ref. No. DFNI-I-02-5 "InterCriteria Analysis: A New Approach to Decision Making."

References

[1] Atanassov, K. (1988) Two variants of intuitionistic fuzzy propositional calculus. Preprint IM-MFAIS-5-88, Sofia, Reprinted: Int J Bioautomation, 2016, 20(S1), S17-S26.
[2] Atanassov, K. (2017) Intuitionistic Fuzzy Logics, Springer, Cham.
[3] Atanassov, K., Szmidt, E., \& Kacprzyk, J. (2013) On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1-13.
[4] Atanassov, K., Szmidt, E., \& Kacprzyk, J. (2017) On intuitionistic fuzzy implication \rightarrow_{187}, Notes on Intuitionistic Fuzzy Sets, 23(2), 37-43.
[5] Atanassov, K., Szmidt, E., \& Kacprzyk, J. (2017) On intuitionistic fuzzy implication \rightarrow_{188}, Notes on Intuitionistic Fuzzy Sets, 23(1), 6-13.
[6] Atanassov, K., Szmidt, E., \& Angelova, N. (2017) Properties of the intuitionistic fuzzy implication \rightarrow_{187}, Notes on Intuitionistic Fuzzy Sets, 23(3), 3-8.
[7] Atanassova, L. (2017) Intuitionistic fuzzy implication \rightarrow_{189}, Notes on Intuitionistic Fuzzy Sets, 23(1), 14-20.
[8] Atanassova, L. (2017) Properties of the intuitionistic fuzzy implication \rightarrow_{189}. Notes on Intuitionistic Fuzzy Sets, 23(4), 10-14
[9] Van Atten, M. (2004) On Brouwer, Wadsworth, Behnout.
[10] Brouwer, L. E. J. (1975) Collected Works, Vol. 1, North Holland, Amsterdam.
[11] Van Dalen, D. (Ed.) (1981) Brouwer's Cambridge Lectures on Intuitionism, Cambridge Univ. Press, Cambridge.
[12] Mendelson, E. (1964) Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand.
[13] Plisko, V. (2009) A survey of propositional realizability logic, The Bulletin of Symbolic Logic, 15(1), 1-42.
[14] Rasiova H. \& Sikorski, R. (1963) The mathematics of Metamathematics, Pol. Acad. of Sci., Warszawa.
[15] Rose, G. F. (1953) Propositional calculus and realizability, Transactions of the American Mathematical Society, 75, 1-19.
[16] Tabakov, M. (1986) Logics and Axiomatics, Nauka i Izkustvo, Sofia (in Bulgarian).

