ICIFSTA'2016, 20–22 April 2016, Beni Mellal, Morocco Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 22, 2016, No. 2, 13–21

Characterization of compact subset of intuitionistic fuzzy sets

S. Melliani, R. Ettoussi, M. Elomari and L. S. Chadli

LMACS, Laboratoire de Mathématiques Appliquées & Calcul Scientifique Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal, Morocco e-mail: said.melliani@gmail.com

Received: 20 February 2016

Accepted: 28 March 2016

Abstract: In this paper we introduce two classes of metrics for spaces of intuitionistic fuzzy sets IF_n . The spaces shown to be complete. We use the support function to embed the metric space (IF_n, d_p) into Banach space, and we give a sufficient and necessary condition for characterization of compacts and locally compact subsets of space IF_n .

Keywords:Intuitionistic fuzzy sets, support function, compact, locally compact. **AMS Classification:** 03E72.

1 Introduction

Applications of fuzzy set theory very often involve the metric space (E^n, d_p) , for $1 \le p \le \infty$ of normal fuzzy convex fuzzy sets over \mathbb{R}^n , where d_p extends the Hausdorff metric. This metric has been found very convenient in studying, for example, fuzzy differential equations (Kaleva [6]), dynamical systems (Kloeden [7]). A characterization of compact subset is discussed for the metric space of normal fuzzy convex fuzzy sets on the space \mathbb{R}^n the metric for which the supremum over the Hausdorff distance between corresponding level sets [3], also for $1 \le p < \infty$, Diamond and Kloeden [4] are discussed the characterization of compact and locally compact subset.

As the intuitionistic fuzzy sets is a generalization of fuzzy sets so we propose in this paper to introduce the metrics on the space of intuitionistic fuzzy numbers IF_n . The first metric d_p is based upon L_p metrics and the second metric d_{∞} extends the Hausdorff metric. Our principal result is that, for each $1 \le p \le \infty$ the metric spaces (IF_n, d_p) are complete, A characterization of the compact subsets in these spaces is also given in terms of boundedness and p-mean equileftcontinuity. Various definitions and preliminaries are set out in Section 2. In section 3, the space IF_n^L embedded into $C([0, 1] \times S^{n-1})$ (Banach space of continuous functions on $[0, 1] \times S^{n-1}$) by using the support function. Finally we present a characterization of compacts and locally compact subsets of IF_n .

2 Preliminaries

Definition 2.1. An intuitionistic fuzzy set A in X ([1], [2]) is a set of ordered triples

$$A = \{ < x, \mu_A(x), \nu_A(x) >, x \in X \}$$

where $\mu_A, \nu_A : X \to [0, 1]$ are functions such that

$$0 \le \mu_A(x) + \nu_A(x) \le 1 \quad , \quad \forall x \in X$$

For each x the numbers $\mu_A(x)$ and $\nu_A(x)$ represent the degree of membership and degree of nonmembership of the element $x \in X$ to $A \subset X$, respectively. For each element $x \in X$ we can compute the so-called, the intuitionistic fuzzy index of x in A defined as follows

$$\pi_A(x) = 1 - \mu_A(x) - \nu_A(x)$$

Of course, a fuzzy set is a particular case of the intuitionistic fuzzy set with $\nu_A(x) = 1 - \mu_A(x)$. Hereinafter $X = \mathbb{R}^n$. We denote by

$$\mathbf{IF}_n = \mathbf{IF}(\mathbb{R}^n) = \left\{ \langle u, v \rangle : \mathbb{R}^n \to [0, 1]^2, | \forall x \in \mathbb{R}^n | 0 \le u(x) + v(x) \le 1 \right\}.$$

An element $\langle u, v \rangle$ of IF_n is said to be an intuitionistic fuzzy number if it satisfies the following conditions:

- (i) $\langle u, v \rangle$ is normal i.e there exists $x_0, x_1 \in \mathbb{R}^n$ such that $u(x_0) = 1$ and $v(x_1) = 1$.
- (ii) u is fuzzy convex and v is fuzzy concave.
- (iii) u is upper semi-continuous and v is lower semi-continuous
- (iv) $supp \langle u, v \rangle = cl\{x \in \mathbb{R}^n : | v(x) < 1\}$ is bounded.

So we denote the collection of all intuitionistic fuzzy number by IF_n . For $\alpha \in [0, 1]$ and $\langle u, v \rangle \in IF^n$, the upper and lower α -cuts of $\langle u, v \rangle$ are defined by

$$\left[\langle u, v \rangle\right]^{\alpha} = \left\{x \in \mathbb{R}^n : v(x) \le 1 - \alpha\right\}$$

and

$$[\langle u,v\rangle]_{\alpha}=\{x\in\mathbb{R}^n:u(x)\geq\alpha\}$$

Remark 2.1. If $\langle u, v \rangle \in IF_n$, so we can see $[\langle u, v \rangle]_{\alpha}$ as $[u]^{\alpha}$ and $[\langle u, v \rangle]^{\alpha}$ as $[1 - v]^{\alpha}$ in the fuzzy case.

We define $0_{\langle 1,0\rangle} \in IF_n$ as

$$0_{\langle 1,0\rangle}(t) = \begin{cases} \langle 1,0\rangle & t=0\\ \langle 0,1\rangle & t\neq 0 \end{cases}.$$

Let $\langle u, v \rangle$, $\langle u', v' \rangle \in \mathrm{IF}_n$ and $\lambda \in \mathbb{R}$, we define the following operations by:

$$\begin{split} \Big(\langle u, v \rangle \oplus \langle u', v' \rangle \, \Big)(z) &= \Big(\sup_{z=x+y} \min \left(u(x), u'(y) \right), \inf_{z=x+y} \max \left(v(x), v'(y) \right) \Big) \\ \lambda \langle u, v \rangle &= \begin{cases} \langle \lambda u, \lambda v \rangle & \text{if } \lambda \neq 0 \\ 0_{\langle 1, 0 \rangle} & \text{if } \lambda = 0 \end{cases}. \end{split}$$

For $\langle u, v \rangle$, $\langle z, w \rangle \in IF_n$ and $\lambda \in \mathbb{R}$, the addition and scaler-multiplication are defined as follows

$$\begin{bmatrix} \langle u, v \rangle \oplus \langle z, w \rangle \end{bmatrix}^{\alpha} = \begin{bmatrix} \langle u, v \rangle \end{bmatrix}^{\alpha} + \begin{bmatrix} \langle z, w \rangle \end{bmatrix}^{\alpha}, \\ \begin{bmatrix} \lambda \langle z, w \rangle \end{bmatrix}^{\alpha} = \lambda \begin{bmatrix} \langle z, w \rangle \end{bmatrix}^{\alpha}$$
(1)

$$\left[\langle u, v \rangle \oplus \langle z, w \rangle \right]_{\alpha} = \left[\langle u, v \rangle \right]_{\alpha} + \left[\langle z, w \rangle \right]_{\alpha} .$$

$$\left[\lambda \langle z, w \rangle \right]_{\alpha} = \lambda \left[\langle z, w \rangle \right]_{\alpha}$$

$$(2)$$

Definition 2.2. Let $\langle u, v \rangle$ be an element of IF_n and $\alpha \in [0, 1]$, we define the following sets:

$$\begin{bmatrix} \langle u, v \rangle \end{bmatrix}_{l}^{+}(\alpha) = \inf\{x \in \mathbb{R}^{n} \mid u(x) \ge \alpha\}, \qquad \begin{bmatrix} \langle u, v \rangle \end{bmatrix}_{r}^{+}(\alpha) = \sup\{x \in \mathbb{R}^{n} \mid u(x) \ge \alpha\}$$
$$\begin{bmatrix} \langle u, v \rangle \end{bmatrix}_{l}^{-}(\alpha) = \inf\{x \in \mathbb{R}^{n} \mid v(x) \le 1 - \alpha\}, \qquad \begin{bmatrix} \langle u, v \rangle \end{bmatrix}_{r}^{-}(\alpha) = \sup\{x \in \mathbb{R}^{n} \mid v(x) \le 1 - \alpha\}$$

Proposition 2.1. For all α , $\beta \in [0, 1]$ and $\langle u, v \rangle \in IF_n$

(i) $\left[\langle u, v \rangle \right]_{\alpha} \subset \left[\langle u, v \rangle \right]^{\alpha}$. (ii) $\left[\langle u, v \rangle \right]_{\alpha}$ and $\left[\langle u, v \rangle \right]^{\alpha}$ are nonempty compact convex sets in \mathbb{R}^{n} . (iii) If $\alpha \leq \beta$ then $\left[\langle u, v \rangle \right]_{\beta} \subset \left[\langle u, v \rangle \right]_{\alpha}$ and $\left[\langle u, v \rangle \right]^{\beta} \subset \left[\langle u, v \rangle \right]^{\alpha}$. (iv) If $\alpha_{n} \nearrow \alpha$ then $\left[\langle u, v \rangle \right]_{\alpha} = \bigcap_{n} \left[\langle u, v \rangle \right]_{\alpha_{n}}$ and $\left[\langle u, v \rangle \right]^{\alpha} = \bigcap_{n} \left[\langle u, v \rangle \right]^{\alpha_{n}}$.

Let M be any set and $\alpha \in [0, 1]$. We denote by

$$M_{\alpha} = \{ x \in \mathbb{R}^n : u(x) \ge \alpha \} \quad \text{and} \quad M^{\alpha} = \{ x \in \mathbb{R}^n : v(x) \le 1 - \alpha \}.$$

Lemma 2.1. [9] let $\{M_{\alpha}, \alpha \in [0,1]\}$ and $\{M^{\alpha}, \alpha \in [0,1]\}$ two families of subsets of \mathbb{R}^n satisfies (i)–(iv) in Proposition 2.1, if u and v define by

$$u(x) = \begin{cases} 0 & \text{if } x \notin M_0 \\ \sup \{ \alpha \in [0, 1] : x \in M_\alpha \} & \text{if } x \in M_0 \\ 1 & \text{if } x \notin M^0 \\ 1 - \sup \{ \alpha \in [0, 1] : x \in M^\alpha \} & \text{if } x \in M^0 \end{cases}$$

Then $\langle u, v \rangle \in IF_n$.

Lemma 2.2. Let I a dense subset of [0, 1], if $\left[\langle u, v \rangle\right]_{\alpha} = \left[\langle u', v' \rangle\right]_{\alpha}$ and $\left[\langle u, v \rangle\right]^{\alpha} = \left[\langle u', v' \rangle\right]^{\alpha}$, for all $\alpha \in I$ then $\langle u, v \rangle = \langle u', v' \rangle$.

2.1 Metric on IF_n

We consider the mapping

$$d_p\left(\langle u,v\rangle,\langle u',v'\rangle\right) = \left(\int_0^1 d_H^p\left([\langle u,v\rangle]_\alpha,[\langle u',v'\rangle]_\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha,[\langle u',v'\rangle]^\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha,[\langle u',v\rangle]^\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha,[\langle u',v\rangle]^\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha,[\langle u,v\rangle]^\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha\right)d\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha\right)d\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha\right)d\alpha\right)d\alpha\right)d\alpha\right)^{1/p} + \left(\int_0^1 d_H^p\left([\langle u,v\rangle]^\alpha\right)d\alpha\right)d\alpha\right)d\alpha\right$$

where d_H is the Hausdorff metric and $p \in [1, \infty[$.

$$d_{\infty}\left(\langle u, v \rangle, \langle u', v' \rangle\right) = \sup_{0 \le \alpha \le 1} d_H\left(\left[\langle u, v \rangle\right]_{\alpha}, \left[\langle u', v' \rangle\right]_{\alpha}\right) + \sup_{0 \le \alpha \le 1} d_H\left(\left[\langle u, v \rangle\right]^{\alpha}, \left[\langle u', v' \rangle\right]^{\alpha}\right)$$

Theorem 2.1. d_p defines a metric on IF_n for $p \in [1, \infty]$.

Proof. Symmetry and the triangle inequality are trivial.

It remains to show that, if $d_p(\langle u, v \rangle, \langle u', v' \rangle) = 0$ then $\langle u, v \rangle = \langle u', v' \rangle$.

Suppose that $d_p(\langle u, v \rangle, \langle u', v' \rangle) = 0$, then $d_H^p([\langle u, v \rangle]_\alpha, [\langle u', v' \rangle]_\alpha) = 0$ and

 $d_H^p([\langle u, v \rangle]^{\alpha}, [\langle u', v' \rangle]^{\alpha}) = 0$, except where α describes some A negligible for the Lebesguemeasuring, which is complementary dense.

As, d_H is a metric on the space $\mathcal{K}_c(\mathbb{R}^n)$ so $[\langle u, v \rangle]_{\alpha} = [\langle u', v' \rangle]_{\alpha}$ a.e and $[\langle u, v \rangle]^{\alpha} = [\langle u', v' \rangle]^{\alpha}$ a.e. According to the Lemma 2.2 the equalities hold for all α , and hence $\langle u, v \rangle = \langle u', v' \rangle$.

A similar reasoning proves that d_{∞} is a metric.

Theorem 2.2. (IF_n, d_p) is a complete metric space.

Proof. Let $([\langle u_n, v_n \rangle])_n$ be a sequence of Cauchy in IF_n, for $\varepsilon > 0$ there exist an integer n_0 such that for $n, q \ge n_0$ we have

$$d_{p}\left(\langle u_{n}, v_{n} \rangle, \langle u_{q}, v_{q} \rangle\right) = \left(\int_{0}^{1} d_{H}^{p}\left([\langle u_{n}, v_{n} \rangle]_{\alpha}, [\langle u_{q}, v_{q} \rangle]_{\alpha}\right) d\alpha\right)^{1/p} + \left(\int_{0}^{1} d_{H}^{p}\left([\langle u_{n}, v_{n} \rangle]^{\alpha}, [\langle u_{q}, v_{q} \rangle]^{\alpha}\right) d\alpha\right)^{1/p} \leq \varepsilon$$

by the completed of the space L^p , hence

$$d_H\left([\langle u_n, v_n \rangle]_\alpha, [\langle u_q, v_q \rangle]_\alpha\right) \underset{n,q \to \infty}{\longrightarrow} 0$$

and

$$d_H\left([\langle u_n, v_n \rangle]^{\alpha}, [\langle u_q, v_q \rangle]^{\alpha}\right) \xrightarrow[n,q \to \infty]{} 0.$$

In addition, the space $(\mathcal{K}_c(\mathbb{R}^n), d_H)$ is a complete metric space, where $\mathcal{K}_c(\mathbb{R}^n)$ is the set of all compact convex subset of \mathbb{R}^n , so $[\langle u_n, v_n \rangle]_{\alpha} \underset{n \to \infty}{\longrightarrow} [\langle u, v \rangle]_{\alpha}$ and $[\langle u_n, v_n \rangle]^{\alpha} \underset{n \to \infty}{\longrightarrow} [\langle u, v \rangle]^{\alpha}$. Thus the sequence $\langle u_n, v_n \rangle$ converge to the limit $\langle u, v \rangle$, the construction of the $\langle u, v \rangle$ via

Lemma 2.1.

3 The embedding theorem

We denote S^{n-1} the unit sphere in \mathbb{R}^n . Let IF_n^L the space of $\langle u, v \rangle \in IF_n$ with lipschitzian α -level sets $[\langle u, v \rangle]_{\alpha}$ and $[\langle u, v \rangle]^{\alpha}$, i.e., with

$$d_H\left([\langle u, v \rangle]_{\alpha}, [\langle u, v \rangle]_{\beta}\right) \le K_1 |\alpha - \beta|$$

and

$$d_H\left([\langle u,v\rangle]^{\alpha},[\langle u,v\rangle]^{\beta}\right) \le K_2|\alpha-\beta|$$

for all $\alpha, \beta \in [0, 1]$ and $K_1, K_2 \in \mathbb{R}^+$.

The addition and scalar multiplication defined by (1), (2) define a linear structure on IF_n , but does not make IF_n a vector space. So for this reason we will use the embedding theorem [8] for embed the subset IF_n^L of the space IF_n into Banach space $\mathcal{C}([0,1] \times S^{n-1})$ by using the support function $\langle u, v \rangle^* = j(\langle u, v \rangle)$ where $\langle u, v \rangle^*$ is the support function of $\langle u, v \rangle$ defined by

$$\langle u, v \rangle^* (\alpha, x) = \sup_{a \in [\langle u, v \rangle]^{\alpha}} \langle a, x \rangle \text{ for all } (\alpha, x) \in I \times S^{n-1}.$$

Then for all $\langle u, v \rangle \in IF_n$, there corresponds a support function $\langle u, v \rangle^* = j(\langle u, v \rangle)$ is welldefined and satisfies the following properties

1. $\langle u, v \rangle^*$ is uniformly bounded on $I \times S^{n-1}$,

$$|\langle u,v\rangle^*(\alpha,x)| \leq \sup_{a \in [\langle u,v\rangle]^0} ||a|| \text{ for all } \alpha \in I \text{ and all } x \in S^{n-1};$$

- 2. $\langle u, v \rangle^*(., x)$ is nonincreasing and leftcontinuous in α for each $x \in S^{n-1}$;
- 3. $\langle u, v \rangle^*(\alpha, .)$ is Lipschitz continuous in x uniformly in $\alpha \in I$

$$|\langle u, v \rangle^* (\alpha, x) - \langle u, v \rangle^* (\alpha, y)| \le \left(\sup_{a \in [\langle u, v \rangle]^0} ||a|| \right) ||x - y||$$

for all $\alpha \in I$ and all $x, y \in S^{n-1}$;

4. For each $\alpha \in I$ and $\langle u, v \rangle, \langle u', v' \rangle \in IF_n$, according to Proposition 2.1 property (i), the following inequality holds

$$d_H\Big([\langle u,v\rangle]_{\alpha}, [\langle u'v'\rangle]_{\alpha}\Big) \le d_H\Big([\langle u,v\rangle]^{\alpha}, [\langle u',v'\rangle]^{\alpha}\Big) = \sup_{x\in S^{n-1}} |\langle u,v\rangle^*(\alpha,x) - \langle u',v'\rangle^*(\alpha,x)|$$

The following theorem gives the desired embedding, which we will used in the next section to characterize compacts subsets of IF_n .

Theorem 3.1. There exists a function $j : IF_n^L \to \mathcal{C}([0,1] \times S^{n-1})$ such that

$$I. \ d_{\infty}\Big(\langle u, v \rangle, \langle u', v' \rangle\Big) \leq 2||j\Big(\langle u, v \rangle\Big) - j\Big(\langle u', v' \rangle\Big)||_{\infty},$$

$$2. \ j\Big(\langle u, v \rangle \oplus \langle u', v' \rangle\Big) = j\Big(\langle u, v \rangle\Big) + j\Big(\langle u', v' \rangle\Big),$$

$$3. \ j\Big(\lambda \langle u, v \rangle\Big) = \lambda j\Big(\langle u, v \rangle\Big), \ \lambda \geq 0.$$

Proof. Let $\langle u, v \rangle$, $\langle u', v' \rangle \in IF_n$ We define the function j by

$$j(\langle u, v \rangle) = \begin{cases} \max_{a \in [\langle u, v \rangle]^{\alpha}} \langle a, x \rangle & \text{if } \alpha > 0\\ \max_{a \in supp\{\langle u, v \rangle\}} \langle a, x \rangle & \text{if } \alpha = 0 \end{cases}$$

Hence, the support function verified the property (4) which allows to write

$$\begin{aligned} d_{\infty}\left(\langle u, v \rangle, \langle u', v' \rangle\right) &= \sup_{0 \le \alpha \le 1} d_{H}\left(\left[\langle u, v \rangle\right]_{\alpha}, \left[\langle u', v' \rangle\right]_{\alpha}\right) + \sup_{0 \le \alpha \le 1} d_{H}\left(\left[\langle u, v \rangle\right]^{\alpha}, \left[\langle u', v' \rangle\right]^{\alpha}\right) \\ &\leq 2 \sup_{0 \le \alpha \le 1} d_{H}\left(\left[\langle u, v \rangle\right]^{\alpha}, \left[\langle u', v' \rangle\right]^{\alpha}\right) \\ &\leq 2||j\Big(\langle u, v \rangle\Big) - j\Big(\langle u', v' \rangle\Big)||_{\infty}. \end{aligned}$$

For the Properties 2 and 3 we refer to [8].

4 Compactness in *d_p* topology

Definition 4.1. Let $\langle u, v \rangle \in IF_n$. If for each $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon, \langle u, v \rangle) > 0$, such that for all $0 \le h < \delta$,

$$\int_{h}^{1} d_{H} \left([\langle u, v \rangle]^{\alpha}, [\langle u, v \rangle]^{\alpha-h} \right)^{p} d\alpha \leq \varepsilon^{p},$$

say that $\langle u, v \rangle$ is p-mean left-continuous. If for nonempty $U \subset IF_n$ this holds uniformly in $\langle u, v \rangle \in U$, we say U is p-mean equi-left-continuous. If, in addition, U is uniformly support bounded i.e (if there exists a $K \in \mathbb{R}^+$ such that $\sup_{a \in [\langle u, v \rangle]^0} ||a|| \leq K$), then U is said to have the p-Blaschke property. Also, this property translates as

$$\int_{h}^{1} \left(\left\langle u, v \right\rangle^{*} (\alpha - h, x) - \left\langle u, v \right\rangle^{*} (\alpha, x) \right)^{p} d\alpha \leq \varepsilon^{p}.$$

$$\in S^{n-1} \text{ and } \langle u, v \rangle^{*} \in U^{*} - i(U)$$

For all $0 \le h \le \delta$, $x \in S^{n-1}$ and $\langle u, v \rangle^* \in U^* = j(U)$.

In the limit $p = \infty$ this concept is just the Blaschke property of the previous section.

Lemma 4.1. Any $\langle u, v \rangle \in IF_n$, is p-mean left-continuous.

Proof. Let $\alpha \in [0,1]$ and suppose $\{\alpha_n\}$ is a nondecreasing sequence converging to α . Then, $[\langle u, v \rangle]^{\alpha} = \bigcap_{n \ge 1} [\langle u, v \rangle]^{\alpha_n}$ and $[\langle u, v \rangle]_{\alpha} = \bigcap_{n \ge 1} [\langle u, v \rangle]_{\alpha_n}$ so, $d_H([\langle u, v \rangle]_{\alpha_n}, [\langle u, v \rangle]_{\alpha}) \to 0$ and $d_H([\langle u, v \rangle]^{\alpha_n}, [\langle u, v \rangle]^{\alpha}) \to 0$, and the result follows from left-continuity on the compact interval [0, 1]

Theorem 4.1. A closed set U of (IF_n, d_p) $(1 \le p < \infty)$, is compact iff U has the p-Blaschke property.

Proof. Necessity. Let U be a compact set in (IF_n, d_p) . If U were not uniformly support bounded, then there would exist a sequence of compact convex sets in \mathbb{R}^n (i.e $(V_j)_{j\in\mathbb{N}} \subset \mathcal{K}_c(\mathbb{R}^n)$), $V_j = supp\{\langle u_j, v_j \rangle\}, \langle u_j, v_j \rangle \in U$, such that $d_H(V_j, \{0\}) > j$. Clearly $\{V_j\}$ has no subsequence with limit in $\mathcal{K}_c(\mathbb{R}^n)$. But since U is compact, there is a subsequence $\langle u_{j_k}, v_{j_k} \rangle$ converging to $\langle u, v \rangle \in U$, and $lim_k V_{j_k} = supp\{\langle u, v \rangle\}$ which is impossible. Hence U must be uniformly support bounded.

Let $\varepsilon > 0$ and let $\langle u_1, v_1 \rangle, ..., \langle u_n, v_n \rangle \in IF_n$ be a $\frac{1}{3}\varepsilon$ -cover of U, that is for any $\langle u, v \rangle \in U$ one of the sequence elements $\langle u_i, v_i \rangle$ satisfies $d_p(\langle u, v \rangle, \langle u_i, v_i \rangle) < \frac{1}{3}\varepsilon$.

Such a sequence exists by the compactness of U.

By Lemma 4.1, $\langle u_1, v_1 \rangle, ..., \langle u_k, v_k \rangle$ are p-mean left-continuous and so there exists $\eta = \min_{1 \le i \le k} \delta(\varepsilon, \langle u_i, v_i \rangle) > 0$ such that $\int_h^1 d_H \left([\langle u_i, v_i \rangle]^{\alpha}, [\langle u_i, v_i \rangle]^{\alpha-h} \right)^p d\alpha < (\frac{1}{3}\varepsilon)^p$ for i = 1, ..., k and $0 \le h \le \eta$. Thus for $\langle u, v \rangle \in U$, the triangle inequality gives

$$\left(\int_{h}^{1} d_{H} \left([\langle u, v \rangle]^{\alpha}, [\langle u, v \rangle]^{\alpha-h} \right)^{p} d\alpha \right)^{1/p} \leq d_{p} \left(\langle u, v \rangle, \langle u_{i}, v_{i} \rangle \right)$$

$$+ \left(\int_{h}^{1} d_{H} \left([\langle u_{i}, v_{i} \rangle]^{\alpha}, [\langle u_{i}, v_{i} \rangle]^{\alpha-h} \right)^{p} d\alpha \right)^{1/p}$$

$$+ d_{p} \left(\langle u, v \rangle, \langle u_{i}, v_{i} \rangle \right)$$

$$\leq \varepsilon$$

so U is p-mean equileft-continuous.

Sufficiency. Let $\{\langle u_k, v_k \rangle\}$ be a sequence in U and $\{\langle u_k, v_k \rangle^*\}$ the corresponding sequence in U^* . Let $D_1 = \{\alpha_i \in I, i = 1, 2, 3, ...\}, D_2 = \{x_j \in S^{n-1}, j = 1, 2, 3, ...\}$ be countable dense subsets of I and S^{n-1} respectively. The usual diagonalisation construction gives a subsequence $\{\langle u_{k_k}, v_{k_k} \rangle^*\}$ and a function $g: D_1 \times D_2 \to \mathbb{R}$ such that $\langle u_{k_k}, v_{k_k} \rangle^* (\alpha_i, x_j) \to g(\alpha_i, x_j)$ uniformly in $(\alpha_i, x_j) \in D_1 \times D_2$ as $k \to \infty$. For notational simplicity write $\langle w, z \rangle_k^* = \langle u_{k_k}, v_{k_k} \rangle^*$, $\langle w, z \rangle_k = \langle u_{k_k}, v_{k_k} \rangle$.

Since U is uniformly support bounded, there exists K > 0 such that

$$|\langle w, z \rangle_k^*(\alpha_i, x) - \langle w, z \rangle_k^*(\alpha_i, y)| \le \Big(\sup_{a \in [\langle w, z \rangle_k]^0} ||a||\Big) ||x - y|| = K||x - y|$$

for all $\alpha_i \in D_1$ and any $\langle w, z \rangle^* \in U^*$. That is, the $\langle w, z \rangle_k^*(\alpha_i, .)$ are equicontinuous on S^{n-1} , uniformly in $\alpha_i \in D_1$. Hence the sequence $\{\langle w, z \rangle_k^*(\alpha_i, x)\}$ converges for each $\alpha_i \in D_1$ and $x \in S^{n-1}$, by Theorem 3.1, Property 1, also this convergence in the d_{∞} and hence d_p norms, and we denote the limits by $g(\alpha_i, x)$. As in [3] (see also [5]) such convergence is uniform in S^{n-1} , and moreover is uniform in D_1 as well, for the sup norm, and thus for d_p norm.

From the properties of the $\langle w, z \rangle_k^* \in U^*$ it follows that

- 1. $|g(\alpha_i, x)| \leq K$ for all $\alpha_i \in D_1$ and $x \in S^{n-1}$;
- 2. $|g(\alpha_i, x) g(\alpha_i, y)| \le K ||x y||$ for all $\alpha_i \in D_1$;
- 3. $g(\alpha_i, x) \leq g(\beta_i, x)$ for all $\beta_i \leq \alpha_i$ in D_1 and $x \in S^{n-1}$.

Then for each $(\alpha_i, x) \in I \times S^{n-1}$, define

$$g(\alpha, x) = \lim_{\alpha_i \to \alpha^-} g(\alpha_i, x), \ \alpha_i \in D_1.$$

Each such exists because g(., x) is nonincreasing in $\alpha_i \in D_1$ and bounded. This defines g on all of $I \times S^{n-1}$ and in such a way that the three properties, immediately above, hold for g on all of $I \times S^{n-1}$. These, together with the left-continuity of g(., x), show that g(., .) is the support function of a well-defined intuitionistic fuzzy set $\langle w, z \rangle$ whose support lies in $\bigcup_{\langle u, v \rangle \in U} [\langle u, v \rangle]^0$. It

remains to show that $d_p(\langle w, z \rangle_k, \langle w, z \rangle) \to 0$ as $k \to \infty$.

By p-mean equi-left-continuity, for a monotonic nondecreasing sequence $\alpha_i = \alpha - h_i \in D_1$

$$\int_{h_i}^1 d_H \Big([\langle w, z \rangle_k]^{\alpha - h_i}, [\langle w, z \rangle_k]^{\alpha} \Big)^p d\alpha < (\frac{1}{2}\varepsilon)^p$$

provided $0 \leq h_i < \delta$ for $\delta = \delta(\varepsilon)$, uniformly in $\langle w, z \rangle_k \in U$. But for $k > N(\frac{1}{2}\varepsilon)$, $g(\alpha_i, x) - \frac{1}{2}\varepsilon < \langle w, z \rangle_k^*(\alpha_i, x) < g(\alpha_i, x)$ uniformly in S^{n-1} and since g is nonincreasing,

$$g(\alpha, x) - \frac{1}{2}\varepsilon \le g(\alpha_i, x) - \frac{1}{2}\varepsilon < \langle w, z \rangle_k^*(\alpha_i, x) < g(\alpha, x) + \frac{1}{2}\varepsilon.$$

Thus, $d_H\left([\langle w, z \rangle_k]^{\alpha_i}, [\langle w, z \rangle]^{\alpha}\right) = \sup_{x \in S^{n-1}} |\langle w, z \rangle_k^*(\alpha_i, x) - g(\alpha, x)| < \frac{1}{2}\varepsilon$. Hence,

$$\begin{aligned} d_p(\langle w, z \rangle_k, \langle w, z \rangle) &\leq \left(\int_{h_i}^1 d_H \Big([\langle w, z \rangle_k]^{\alpha}, [\langle w, z \rangle_k]^{\alpha - h_i} \Big)^p d\alpha \Big)^{\frac{1}{p}} \\ &+ \Big(\int_{h_i}^1 d_H \Big([\langle w, z \rangle_k]^{\alpha - h_i}, [\langle w, z \rangle]^{\alpha} \Big)^p d\alpha \Big)^{\frac{1}{p}} \\ &< \varepsilon \end{aligned}$$

for all $K > N(\frac{1}{2}\varepsilon)$.

٦	
	1

5 Locally compact in (\mathbf{IF}_n, d_p)

Theorem 5.1. The space (IF_n, d_p) , $1 \le p < \infty$, is locally compact. Moreover, a subset U is locally compact iff every uniformly support bounded and closed subset of U is p-Blaschke.

Proof. For sufficiency, let $U \subset IF_n$ be such that any uniformly support bounded and closed set is p-Blaschke, and take $\langle u, v \rangle \in U$. Since $\langle u, v \rangle$ has compact support, there exists K > 0 such that $d_p(\langle u, v \rangle, 0_{\langle 1, 0 \rangle}) \leq K$. Then, $N_{\varepsilon}(\langle u, v \rangle) = \{\langle u', v' \rangle : d_p(\langle u, v \rangle, \langle u', v' \rangle) < \varepsilon\}$ form a neighborhood basis of $\langle u, v \rangle$, and for every $\langle w, z \rangle \in N_{\varepsilon}(\langle u, v \rangle), d_p(\langle w, z \rangle, 0_{\langle 1, 0 \rangle}) \leq K + \varepsilon$. So $N_{\varepsilon}(\langle u, v \rangle)$ is uniformly support bounded, and hence p-Blaschke. So $cl(N_{\varepsilon}(\langle u, v \rangle))$ is compact, and U is locally compact.

For necessity, we have the space (IF_n, d_p) , $1 \le p < \infty$, is locally compact, since the same argument shows every point of the metric space has a compact neighborhood. Since, for $1 \le p < \infty$, the space is also separable, $IF_n = \bigcup_{k\ge 1} U_k$ where $U_1 \subseteq U_2... \subseteq U_k \subseteq U_{k+1}...$ and the U_k are p-Blaschke. So any closed subset of U that is uniformly support bounded lies in one of the U_k , for some sufficiently large k, and is thus p-mean equileft-continuous, and so p-Blaschke.

References

- [1] Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
- [2] Atanassov, K. (1999) Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin.
- [3] Diamond, P. & Kloeden, P. (1989) Characterization of compact subset of Fuzzy sets, *Fuzzy* sets and Fuzzy System, 29, 341–348.
- [4] Diamond, P. & Kloeden, P. (1990) Metric spaces of Fuzzy sets, *Fuzzy Sets and Systems*, 35, 241–249.
- [5] Graves, L. M. (1946) *The Theory of Functions of Real Variables*, McGraw-Hill Book company, Inc.
- [6] Kaleva, O. (1987) Fuzzy differential equations, *Fuzzy Sets and Systems*, 24, 301–317.
- [7] Kloden, P. E. (1982) Fuzzy dynamical systems, *Fuzzy Sets and Systems*, 275–296.
- [8] Puri, M. L. & Ralescu, D. A. (1985) The concept of normality for fuzzy random variable, *Annals of Probability*, 13(4), 1373–1379.
- [9] Melliani, S., Elomari, M., Chadli, L. S. & Ettoussi, R. (2015) Intuitionistic fuzzy metric space, *Notes on Intuitionistic Fuzzy Sets*, 21(1), 43–53.
- [10] Vitale, R. A. (1985) L_p Metrics for Compact, Convex Sets. *Journal of Approximation Theory* 45(3), 280–287.