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Abstract. Different kinds of genetic algorithms have been investigated
for a parameter identification of a fermentation process. Altogether eight
realizations of genetic algorithms have been presented - four of simple
genetic algorithms and four of multi-population ones. Each of them is
characterized with a different sequence of implementation of main ge-
netic operators, namely selection, crossover and mutation. A comparison
of considered eight kinds of genetic algorithms is presented for a param-
eter identification of a fed-batch cultivation of S. cerevisiae. All kinds
of multi-population algorithms lead to considerable improvement of the
optimization criterion value but for more computational time. Among
the considered multi-population algorithms, the best one has an oper-
ators’ sequence of crossover, mutation and selection. Different kinds of
considered simple genetic algorithms lead to similar values of the opti-
mization criterion but the genetic algorithm with an operators’ sequence
of mutation, crossover and selection is significantly faster than the others.

1 Introduction

Fermentation processes (FP) are widely used in different branches of industry, i.e.
in the production of pharmaceuticals, chemicals and enzymes, yeast, foods and
beverages. Live microorganisms play an important role in these processes so their
peculiarities predetermine some specific characteristics of FP as modeling and
control objects. As complex, nonlinear, dynamic systems with interdependence
and time-varying process variables, FP are a serious challenge for modelling and
further high-quality control. An important step for adequate modeling of non-
linear models of FP is the choice of a certain optimization procedure for model
parameter identification. The conventional optimization methods can not over-
come the limitations of FP, while genetic algorithms (GA), as stochastic global
optimization method, are quite promising. GA are a direct random search tech-
nique for finding global optimal solution in complex multidimensional search
space. GA have a lot of advantages such as hard problems solving, noise toler-
ance, easy to interface and hybridize. All these properties predetermine GA as
suitable and more workable for the optimization of highly non-linear problems,
especially for a parameter identification of fermentation process models [1,2,
8-10].



Simple (SGA) and multi-population (MpGA) genetic algorithm, as presented
initially in Goldberg [5] search a global optimal solution using three main ge-
netic operators in a sequence selection, crossover and mutation. For the purpose
of this investigation, SGA and MpGA with such sequence are denoted respec-
tively as SGA-SCM and MpGA-SCM. Many improved variations of the SGA and
MpGA have been developed [1,4,7,10]. Among them are the modified genetic
algorithm [10] with a sequence crossover, mutation and selection, here denoted
as SGA-CMS, and consequent modification of MpGA based on such exchange
[1], here denoted as MpGA-CMS. In these algorithms selection operator has
been processed after performing of crossover and mutation. The main idea for
such operators’ sequence is to prevent the loss of reached good solution by ei-
ther crossover or mutation or both operators. SGA-CMS applied to a parameter
identification of E. coli fed-batch cultivation [10] and further tested also for a
parameter identification of S. cerevisiae fed-batch cultivation [1] improves the
optimization capability of the algorithm, decreasing decision time. MpGA-CMS
applied to a parameter identification of S. cerevisiae fed-batch cultivation de-
creases the algorithm calculation time and improves significantly the decision
adequacy compared to SGA. Obtained promising results applying SGA-CMS
and MpGA-CMS encourage more investigations to be performed in order fur-
ther improvements of the algorithms to be found.

In GA as presented initially in Holland [6] and further in Goldberg [5], the
operator mutation is usually applied after the operator crossover. The basic
idea of GA is to imitate the mechanics of natural selection and genetics, so
one can make an analogy with the processes occurring in the nature. As such,
the probability mutation to come first and then crossover is comparable to the
idea both processes to occur in a reverse order. The purpose of this study is to
investigate the influence of the genetic operators’ sequence selection, crossover
and mutation in SGA and MpGA. Presented in [5] SGA-SCM and MpGA-SCM,
as well as developed SGA-CMS [10] and MpGA-CMS [1] have been compared
with four new proposed kinds with exchanged sequence of mutation and crossover
operators. Obtained altogether eight kinds of the SGA and the MpGA have been
compared in terms of accuracy and performance for a parameter identification
of S. cerevisiae fed-batch cultivation.

2 Implementation of Exchanged Operators’ Sequence
of Crossover and Mutation in Simple and
Multi-population Genetic Algorithms

The ideology of implementation of GA for the parameter identification purposes
could be summarized as follows. The chromosomes represents the models pa-
rameters and corresponding objective function value is associated to each chro-
mosome. The objective function is used to provide a measure of how individuals
have performed in the problem domain. In the case of minimization problem, the
fitted individuals will have the lowest numerical value of the associated objective
function. This raw measure of fitness is only used as an intermediate stage in



determining the relative performance of individuals in genetic algorithms. The
selection algorithm chooses individuals for reproduction on the basis of their
relative fitness. Selected chromosomes, through reproduction, crossover and mu-
tation, form a new population. Generated in that way population is used for a
further run of the algorithm. The GA is terminated when a certain number of
generations is fulfilled, a mean deviation in the population is satisfied, or when
a particular point in the search space is encountered.

Simple genetic algorithm (denoted here as SGA-SCM) guides the mechanism
of evaluation implementing the three main operators in a sequence selection,
crossover and mutation. Presently four modifications of SGA and MpGA are
elaborated and demonstrated, implementing the exchange of operators’ sequence
crossover and mutation. Newly presented modifications are as follows:

SGA-SMC - a modification of the developed in [5] SGA-SCM;
SGA-MCS - a modification of the developed in [10] SGA-CMS;
MpGA-SMC - a modification of the developed in [5] MpGA-SCM;
MpGA-MCS - a modification of the developed in [1] MpGA-CMS.

Since the MpGA are more complex than SGA, and as a case with most ex-
changes towards the originally presented by Goldberg GA, the elaboration of
MpGA-MCS is shortly presented below. Multi-population genetic algorithm is
a single population genetic algorithm, in which many populations, called sub-
populations, evolve independently from each other for a certain number of gen-
erations. After a certain number of generations (isolation time), a number of
individuals are distributed between the subpopulations. In the beginning, the
MpGA generates a random population of n chromosomes, i.e. suitable solutions
for the problem. In order to prevent the loss of reached good solution by either
crossover or mutation or both operators, selection operator has been processed
after performing of crossover and mutation [1]. The new modification presented
here is that, the individuals are reproduced processing firstly mutation, followed
by crossover. The elements of chromosome are a bit changed when a newly cre-
ated offspring mutates, after that the genes from parents combine to form a whole
new chromosome during the crossover. After the reproduction, the MpGA-MCS
calculates the fitness values for the offspring and the best fitted individuals are
selected to replace the parents. Then the algorithm evaluates the objective val-
ues (cost values) of the individuals in the current population and according to
that the new chromosome is created. the MpGA is terminated when a certain
number of generations is fulfilled.

Proposed exchange in a operators’ sequence mutation and crossover has been
also applied towards SGA-SCM, SGA-CMS and MpGA-SCM. This results in
new algorithm modifications considered in this investigation and denoted as
SGA-SMC, SGA-MCS and MpGA-SMC respectively.



3 Parameter Identification of S. cerevisiae Fed-batch
Cultivation using Different Kinds of Simple and
Multi-population Genetic Algorithms

Experimental data of S. cerevisiae fed-batch cultivation is obtained in the Insti-
tute of Technical Chemistry - University of Hannover, Germany. The cultivation
of the yeast S. cerevisiae is performed in a 2 I reactor, using a Schatzmann
medium [8]. The initial liquid volume is 1.3 1. Glucose in feeding solution is 35
g/1. The temperature was controlled at 30C, the pH at 5.5. The stirrer speed was
set to 1200 rpm. The aeration rate was kept at 300 1/h. Biomass and ethanol were
measured off-line, while substrate (glucose) and dissolved oxygen were measured
on-line.

Mathematical model of S. cerevisiae fed-batch cultivation is commonly de-
scribed as follows, according to the mass balance [11]:

% = uX — gx (1)

% = 45X + 57 (Sin = 5) 2)
% = qpX - %E (3)

d% = g0, X + k20 (03 — 0,) )
= F (5)

where X is the concentration of biomass, [g/]]; S - concentration of substrate
(glucose), [g/1]; E - concentration of ethanol, [g/1]; O - concentration of oxygen,
[%]; O3 - dissolved oxygen saturation concentration, [%]; F' - feeding rate, [1/h];
V - volume of bioreactor, [I]; £92a - volumetric oxygen transfer coefficient, [1/h];
Sin - initial glucose concentration in the feeding solution, [g/1]; 1, gs, q4E, g0,
- specific growth/utilization rates of biomass, substrate, ethanol and dissolved
oxygen, [1/h].

Considered here fed-batch cultivation of S. cerevisiae is characterized with
keeping glucose concentration equal or below to its critical level (Se.;+ = 0.05 g/1)
and with sufficient dissolved oxygen in the broth Oz > Oscrit (O2erie = 18%).
This state corresponds to so called mixed oxidative state according to functional
state modeling approach [11]. As presented in [11], the specific growth rate is
generally found to be a sum of two terms, one describing the contribution of sugar
and the other - the contribution of ethanol to yeast growth. Both terms have
the structure of Monod model. Monod model is also used for the specific ethanol
and sugar consumption rates. Dissolved oxygen consumption rate is obtained as
a sum of two terms, which are directly proportional to the specific glucose rate



and specific ethanol production rate, respectively. Hence, specific rates in Eqgs.
(1)-(5) are presented as follows:

e S B s S
M_MQSS—i—kS MQEE—kkE’qs_YSXS—FkS’
e E
qE YEXE+kE7qO2 qeYoE +qsYos (6)

where pog, pop - maximum growth rates of substrate and ethanol, [1/h]; kg,
kg - saturation constants of substrate and ethanol, [g/l]; Y;; - yield coefficients,
[g/g]-

As an optimization criterion, mean square deviation between the model out-
put and the experimental data obtained during cultivation has been used:

Jy = Z (Y —Y*)* = min (7)

where Y and Y* are the experimental and model predicted data respectively,
Y =X, 5, E, Oq.

Parameter identification of the model (1)-(5) has been performed using Ge-
netic Algorithm Toolbox in Matlab 5.3 environment [3]. All the computations
are performed using a PC Intel Pentium 4 (2.4 GHz) platform running Windows
XP. Consequently eight kinds of genetic algorithms - four kinds of SGA and four
kinds of MpGA, four of them newly presented here, have been applied for the
purpose of a parameter identification of S. cerevisiae fed-batch cultivation. A
comparison between performances of four kinds of SGA is presented in Table 1,
while Table 2 presents results obtained using four kinds of MpGA.

Table 1. Table 1. Results from model parameter identification using different kinds of
SGA

Parameter [SGA-SCM[SGA-SMC[SGA-CMS[SGA-MCS
Jy 0.0223 0.0221 0.0225 0.0223
CPU time, s| 73.8281 73.4688 64.8281 59.5156
p2s, 1/h 0.9616 0.9038 0.9211 0.9119
p2e, 1/h 0.0971 0.1320 0.0872 0.0966
ks, g/1 0.1154 0.1119 0.1176 0.1109
kg, g/ 0.7963 0.7990 0.7620 0.7987
Ysx, g/g 0.4279 0.4072 0.4279 0.4316
Yex, g/g 1.2898 1.7699 1.2898 1.3170
k92a, 1/h | 385895 | 116.4160 | 127.2898 | 141.1076
Yos, g/g | 313.8285 | 898.6292 | 989.8014 | 993.2537
Yor, g/g | 234.7797 | 281.1797 | 62.6547 | 166.6377

As shown in Table 1, the optimization criterion values obtained with four
types of standard genetic algorithms are very similar. Hopefully, there is no



loss of adequacy of the model when the operator mutation is performed before
crossover. Moreover, proposed modification in the algorithm reduses time of
reaching of a global minimum. While the implementation of SGA-SMC compared
to SGA-SCM does not lead to significant decrease (<1%) of decision time, the
use of SGA-MCS reduces the time with 9% compared to SGA-CMS. The fastest
algorithm SGA-MCS achieves the global minimum for 24% less time than SGA-
SCM. Presented here comparison shows that the implementation of the operators
in a sequence of mutation, crossover and than selection is the most optimal in
attitude of rate with reserved high adequacy of the decision.

Table 2. Table 2. Results from model parameter identification using different kinds of
MpGA

Parameter MpGA-SCM | MpGA-SMC MpGA-CMS MpGA-MCS
Ty 0.0144 0.0145 0.0144 0.0145
CPU time, s| 100.6563 98.0625 95.6094 100.4688
p2s, 1/h 0.9000 0.9012 0.9003 0.9073
p2m, 1/h 0.1447 0.0967 0.1342 0.0549
ks, g/l 0.1500 0.1499 0.1500 0.1500
kg, g/l 0.8000 0.7739 0.8000 0.7647
Ysx, g/g 0.3944 0.4131 0.4076 0.4271
Yex, g/g 6.9156 4.8402 6.5616 2.7389
k¥2a, 1/h 101.6394 71.5478 95.7177 98.3150
Yos, g/g 808.7495 569.6776 753.0205 772.7289
Yo, g/g 522.0352 759.6290 282.2053 449.7269

As it is seen from Table 2, the values of the optimization criterion obtained
using multi-population genetic algorithms are also comparable. The expected im-
provement in CPU time of MpGA-SMC towards MpGA-SCM has been observed
(with about 3%), while MpGA-MCS reaches the decision slowly than MpGA-
CMS. Hence, the fastest MpGA has an operators sequence of crossover, mutation
and selection and reaches the decision with 5% faster than MpGA-SCM.

The results presented in Table 1 for SGA and those in Table 2 for MpGA
have been compared too. The value of the optiomization criterion in MpGAs is
about 50% less than the criterion in SGA. Unfortunately, MpGA need more time
to reach the global minimum. That is why it is up to the user to make a decision
which type of GA to use as a compromise between the time consumption and
model precision.

Due to the similarity of the results from the implementation of all considered
here eight types of GA, only these obtained with MpGA-CMS (as the fastest
and the most precise among the MpGA) are here presented. Fig. 1 presents
results from experimental data and model prediction respectively for biomass,
substrate, ethanol and dissolved oxygen.
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Fig. 1. Experimental data and model prediction for biomass, substrate, ethanol and
dissolved oxygen concentrations

4 Analysis and Conclusions

In this investigation altogether four modifications two of SGA and two of
MpGA have been proposed, implementing the exchanged operators sequence of
mutation and crossover. Newly suggested SGA-SMC, SGA-MCS, MpGA-SMC
and MpGA-MCS have been developed and compared respectively to SGA-SCM,
SGA-CMS, MpGA-SCM and MpGA-CMS for the purposes of a parameter iden-
tification of a fed-batch cultivation of S. cerevisiae. Implementation of the main
genetic operators in order mutation, crossover and selection in SGA significantly
improves calculation time of the algorithm without affecting to the model ade-
quacy. SGA-MCS solves the optimization problem 9% faster than SGA-CMS and
24% than SGA-SCM. Four kinds of MpGA lead to significant improvement of
about 50% of the optimization criterion value but for more computational time.
Among the considered MpGA, the fastest and the most precise one implements
an operators sequence of crossover, mutation and selection. Finally, comparing
SGA and MpGA it is up to the user to make a decision which type of GA to use
as a compromise between the time consumption and model precision.



5 Acknowledgements

This work is partially supported by the Furopean Social Fund and Bulgarian
Ministry of Education, Youth and Science under Operative Program “Human
Resources Development”, grant BG051P0001-3.3.04/40 and National Science
Fund of Bulgaria, grant number DID 02-29 “Modeling Processes with Fized De-
velopment Rules”.

References

9.

. Angelova, M., Tzonkov, St., Pencheva, T.: Modified multi-population genetic algo-

rithm for yeast fed-batch cultivation parameter identification. Int. J. Bioautomation
13(4) (2009) 163-172

Carrillo-Ureta, G. E., Roberts, P. D., Becerra, V. M.: Genetic algorithms for optimal
control of beer fermentation. Proc. of the 2001 IEEE Int. Symp. on Intelligent
Control, Mexico City, Mexico (2001) 391-396

Chipperfield, A. J., Fleming, P., Pohlheim, H., Fonseca, C. M.: Genetic algorithm
toolbox for use with MATLAB. Users guide, version 1.2. Dept. of Automatic Control
and System Engineering, University of Sheffield, UK (1994)

Cordon, O., Herrera, F.: Hybridizing genetic algorithms with sharing scheme and
evolution strategies for designing approximate fuzzy rule-based systems. Fuzzy Sets
and Systems 118 (2001) 235-255

Goldberg, D.: Genetic algorithms in search, optimization and machine learning.
Addison-Wiley Publishing Company, Massachusetts (1989)

Holland, J.: Adaptation in natural and artificial systems. MIT Press (1975)

Kuo, R. J., Chen, C. H., Hwang, Y. C.: An intelligent stock trading decision support
system through integration of genetic algorithm based fuzzy neural network and
artificial neural network. Fuzzy Sets and Systems 118 (2001) 21-45

Pencheva, T., Roeva, O., Hristozov, I.: Functional state approach to fermentation
processes modelling. Tzonkov St., B. Hitzmann (Eds.). Prof. Marin Drinov Aca-
demic Publishing House, Sofia (2006)

Ranganath, M., Renganathan, S., Gokulnath, C.: Identification of bioprocesses using
genetic algorithm. Bioprocess Engineering 21 (1999) 123-127

10. Roeva, O., A modified genetic algorithm for a parameter identification of fermen-

tation processes. Biotechnol. and Biotechnol. Equip. 20 (2006) 202-209

11. Zhang, X.-C., Visala, A., Halme, A., Linco, P.: Functional state modelling approach

for bioprosesses: local models for aerobic yeast growth processes. J. Proc. Contr.
4(3) (1994) 127-134



