
P. Angelov · K.T. Atanassov · L. Doukovska
M. Hadjiski · V. Jotsov · J. Kacprzyk
N. Kasabov · S. Sotirov · E. Szmidt
S. Zadrożny
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Abstract. In this paper, we continue our investigations of the newly developed 
InterCriteria Decision Making (ICDM) approach with considerations about the 
more appropriate choice of the employed intuitionistic fuzzy threshold values. 
In theoretical aspect, our aim is to identify the relations between the thresholds 
of inclusion of new elements to the set of strictly correlating criteria and the 
numbers of correlating pairs of criteria thus formed. We illustrate the findings 
with data extracted from the World Economic Forum’s Global Competitiveness 
Reports for the years 2008–2009 to 2013–2014 for the current 28 Member 
States of the European Union. The study of the findings from the considered 
six-year period involves trend analysis and computation of two approximating 
functions: a linear function and a polynomial function of 6th order. The per-year 
trend analysis of each of the 12 criteria, called ‘pillars of competitiveness’ in 
the WEF’s GCR methodology, gives an opportunity to prognosticate their val-
ues for the forthcoming year 2014–2015. 

Keywords: Global Competitiveness Index, InterCriteria decision making,  
Intuitionistic fuzzy sets, Multicriteria decision making, Trend analysis. 

1 Introduction 

In a series of papers, we have started investigating the application of the newly pro-
posed InterCriteria Decision Making (ICDM) approach, based on the concepts of 
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intuitionistic fuzzy sets (see [1, 3, 4]) and index matrices (see [2]). ICDM aims to 
support a decision maker, who disposes of datasets of evaluations or measurements of 
multiple objects against multiple criteria, to more profoundly understand the nature of 
the utilized evaluation criteria, and discover some correlations existing among the 
criteria themselves. Theoretically, the ICDM approach has been presented in details in 
[5], and in [6, 7, 8] the approach was further discussed by the coauthors in the light of 
its application to data about EU Member States’ competitiveness in the period 2008–
2014, as obtained from the World Economic Forum’s (WEF) annual Global Competi-
tiveness Reports(GCRs), [9]. 

Shortly presented, in the ICDM approach, we have (at least one) matrix of evalua-
tions or measurements of m evaluated objects against n evaluating criteria, and from 
these we obtain a respective n × n matrix giving the discovered correlations between 
the evaluating criteria in the form of intuitionistic fuzzy pairs, or, which is the same 
but more practical, two n × n matrices giving in separate views the membership-
values (a μ-matrix) and the non-membership pairs (a -matrix). Once having these, 
we are interested to see which of the criteria are in positive consonance (situation of 
definitively correlating criteria), in negative consonance (situation of definitively non-
correlating criteria), or in dissonance (situation of uncertainty, when no definitive 
conclusion can be made). In order to categorize all the values of the resultant 
n(n – 1)/2 pairs of criteria, we need to define two thresholds,  and , for the positive 
and for the negative consonance, respectively. 

In [5, 7], where the emphasis was put on some other aspects of the ICDM’s ap-
proach, we considered the rather simplistic case when the [0; 1]-limited threshold 
values  and  were changing with a predefined precision step and were always sum-
ming up to 1. Later, in [6], we notice that this approach is not enough discriminative 
and helpful for the decision maker, and reformulate the problem statement aiming to 
identify (shortlist) the k most strongly positively correlated criteria out of the totality 
of n disposable evaluation criteria. A general problem-independent algorithm for this 
shortlisting procedure is proposed there, and will be partially relied on here as well. 

2 Data Presentation 

The presented in [6] algorithm for identifying the values of threshold α under which a 
given element of the set of evaluating criteria starts entering in positive consonances 
with the rest criteria. The algorithm involves taking the maximal values of positive 
consonance per criterion (which in the terms of index matrices is the operation max-
row-aggregation), sorting this list in descending order, and thus finding the ordering 
of the criteria by positive consonance.  

In [6], we illustrated this algorithm using the datasets of EU Member States’ com-
petitiveness, as evaluated by the World Economic Forum. We made the calculations 
for both the positive and the negative consonance, in order to compare the results on 
this plane, as well as in time. We presented the results only for years 2008 2009  
and 2013 2014, which are the two extreme years in the period we analyse from the 
publicly available GCRs, [9]. Here we will present the tables for all six years sepa-
rately (Tables 1–6), as well as in aggregation (Table 7). 
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Table 1. Results for year 2008–2009 

Number of 
correlating 

criteria 

Number 
of pairs of 
correlating 

criteria 

Criteria 
ordered by 

positive 
consonance 

True 
when  

 

 
Number of 
correlating 

criteria 

Number of 
pairs of 

correlating 
criteria 

Criteria 
ordered by 
negative 

consonance 

True 
when  

 

2 1 11 0.860  2 1 1 0.077 
12  6 

4 2 1 0.844  4 2 11 0.079 
2  12 

5 3 6 0.833  5 3 8 0.09 
6 5 8 0.828  6 4 9 0.095 
7 6 9 0.823  8 5 4 0.108 
8 14 5 0.796  5 
9 18 4 0.780  9 8 2 0.114 

10 37 3 0.693  11 35 3 0.204 
11 41 7 0.664  7 
12 45 10 0.648  12 54 10 0.307 

Table 2. Results for year 2009–2010 

Number of 
correlating 

criteria 

Number 
of pairs of 
correlating 

criteria 

Criteria 
ordered by 

positive 
consonance 

True 
when  

 

 
Number of 
correlating 

criteria 

Number of 
pairs of 

correlating 
criteria 

Criteria 
ordered by 
negative 

consonance 

True 
when  

 

2 1 1 0.856  2 1 11 0.071 
6  12 

4 2 11 0.852  4 2 1 0.077 
12  6 

5 3 9 0.849  5 4 9 0.106 

7 8 2 0.807  6 6 5 0.119 
5  7 9 8 0.122 

8 16 8 0.783  8 12 4 0.124 

9 18 4 0.778  9 15 2 0.135 
10 36 7 0.693  10 35 7 0.206 

11 37 3 0.690  11 37 3 0.212 
12 52 10 0.622  12 55 10 0.302 

Table 3. Results for year 2010–2011 

Number of 
correlating 

criteria 

Number 
of pairs of 
correlating 

criteria 

Criteria 
ordered by 

positive 
consonance 

True 
when  

 

 
Number of 
correlating 

criteria 

Number of 
pairs of 

correlating 
criteria 

Criteria 
ordered by 
negative 

consonance 

True 
when  

 

2 1 11 0.852  2 1 11 0.087 
12  12 

3 2 1 0.849  3 2 1 0.095 
4 3 9 0.828  4 3 6 0.103 
5 4 6 0.825  5 5 9 0.106 
6 8 5 0.812  6 6 4 0.114 
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Table 4.(continued) 

7 9 2 0.810  7 7 5 0.116 
8 18 4 0.751  8 10 2 0.127 
9 24 8 0.720  9 28 8 0.185 
10 31 7 0.690  10 29 3 0.190 
11 34 3 0.683  11 30 7 0.198 
12 42 10 0.653  12 54 10 0.294 

Table 4. Results for year 2011–2012 

Number of 
correlating 

criteria 

Number 
of pairs of 
correlating 

criteria 

Criteria 
ordered by 

positive 
consonance 

True 
when  

 

 
Number of 
correlating 

criteria 

Number of 
pairs of 

correlating 
criteria 

Criteria 
ordered by 
negative 

consonance 

True 
when  

 

2 1 11 0.870  2 1 11 0.074 
12  12 

3 2 9 0.854  3 2 9 0.090 

4 3 1 0.841  4 3 1 0.095 

5 6 2 0.831  5 4 5 0.098 
6 10 5 0.807  6 6 2 0.114 

7 11 6 0.796  7 8 6 0.116 

8 19 8 0.738  8 17 4 0.153 
9 24 7 0.706  9 22 8 0.175 

10 25 4 0.704  10 23 7 0.180 
11 29 3 0.685  11 35 3 0.241 

12 35 10 0.672  12 49 10 0.283 

Table 5. Results for year 2012–2013 

Number of 
correlating 

criteria 

Number 
of pairs of 
correlating 

criteria 

Criteria 
ordered by 

positive 
consonance 

True 
when  

 

 
Number of 
correlating 

criteria 

Number of 
pairs of 

correlating 
criteria 

Criteria 
ordered by 
negative 

consonance 

True 
when  

 

2 1 1 0.870  2 1 1 0.071 
9  9 

4 2 11 0.865  3 2 6 0.074 
12  5 3 11 0.077 

5 5 5 0.836  12 
6 7 6 0.831  6 6 5 0.090 

7 9 2 0.815  7 10 2 0.111 

9 18 4 0.749  8 11 4 0.114 
8  10 25 7 0.153 

10 22 7 0.741  8 

11 40 10 0.659  11 42 3 0.267 
12 42 3 0.648  12 46 10 0.286 
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Table 6. Results for year 2013–2014 

Number of 
correlating 

criteria 

Number 
of pairs of 
correlating 

criteria 

Criteria 
ordered by 

positive 
consonance 

True 
when  

 

 
Number of 
correlating 

criteria 

Number of 
pairs of 

correlating 
criteria 

Criteria 
ordered by 
negative 

consonance 

True 
when  

 

2 1 11 0.873  2 1 11 0.071 
12  12 

4 2 1 0.854  4 2 1 0.077 
9  6 

5 3 5 0.847  5 3 5 0.079 

6 11 2 0.804  6 4 9 0.090 

7 13 6 0.788  8 13 2 0.135 
9 20 7 0.749  7 

8  9 17 4 0.143 

10 25 4 0.730  10 19 8 0.146 
11 37 3 0.675  11 38 3 0.251 

12 39 10 0.661  12 45 10 0.286 

Table 7. Results for year 2008–2014 

Number of 
correlating 

criteria 

Number 
of pairs of 
correlating 

criteria 

Criteria 
ordered by 

positive 
consonance 

True 
when  

 

 
Number of 
correlating 

criteria 

Number of 
pairs of 

correlating 
criteria 

Criteria 
ordered by 
negative 

consonance 

True 
when  

 

2 1 11 0.836  2 1 11 0.091 
12  12 

4 2 1 0.821  4 2 1 0.092 
6  6 

6 5 5 0.804  5 3 5 0.109 
9  6 4 9 0.124 

7 7 2 0.789  7 8 4 0.139 

8 18 8 0.745  8 9 2 0.144 
9 21 4 0.725  9 18 8 0.163 

10 25 7 0.693  10 26 7 0.190 
11 34 3 0.672  11 34 3 0.239 

12 44 10 0.622  12 48 10 0.306 

 
While columns 1, 3 and 4 in each of the Tables 1–7 have been discussed and de-

termined within the algorithm, we also support information in column 2 about the 
number of pairs formed by the so ordered correlating criteria. This separately deter-
mined, completely data-dependent, number gives information about the level of inter-
connectedness between the involved criteria, and is also considered by us to be useful 
to keep track of. From these 7 tables, we are interested to detect the dependences be-
tween the increase of the threshold values and the interconnectedness between the 
correlating criteria, and thus propose another way of determining the threshold values. 

We are also interested to perform trend analysis of the threshold values for all the 
years from 2008 2009 to 2013 2014, and formulate a prognosis for year 2014 2015. 
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3 Main Results 

Taking the data from Tables 1–6 from columns 2 and 4, we obtain six charts (Fig. 1–6), 
of the dependence between the number of pairs of correlating criteria, i.e. the inter-
connectedness (as plotted on the axis x), and the thresholds of inclusion of a new cri-
terion to the set of correlating criteria (in descending order, as plotted on the axis y). 

These figures allow us to make observations about the homogeneity of the positive 
consonances exhibited by the evaluation criteria, and thus more easily decide how to 
divide the set of criteria on strongly and weakly correlating ones. Finally, this helps us 
decide about the number k of the totality of n criteria, on which to focus our attention, 
as was formulated for parts of the problems ICDM solves, [6]. 

 

 

Fig. 1. Results for year 2008–2009. Fig. 2. Results for year 2009–2010. 

 

Fig. 3. Results for year 2010–2011. 
 

Fig. 4. Results for year 2011–2012. 

Fig. 5. Results for year 2012–2013. Fig. 6. Results for year 2013–2014. 
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On this basis we can conclude that for year 2013 2014, we can see that four 
groups of criteria are formed:  
• five strongly correlating, with α varying from 0.847 to 0.873: ‘11. Business sophis-

tication’, ‘12. Innovation’, ‘1. Institutions’, ‘9. Technological readiness’ and ‘5. 
Higher education and training’; 

• two weakly correlating, with α varying from 0.788 to 0.804: ‘2. Infrastructure’ and 
‘6. Goods market efficiency’; 

• three weakly non-correlating, with α varying from 0.730 to 0.749: ‘7. Labor mar-
ket efficiency’, ‘8. Financial market sophistication’ and ‘4. Health and primary 
education’; and 

• two strongly non-correlating, with α varying from 0.661 to 0.675: ‘3. Macroeco-
nomic stability’ and ’10. Market size’. 
With the data from this case, involving 12 criteria only, the decision maker can 

easily make the above observation without further calculations or application of other 
sophisticated methods. However, in cases involving a greater number of criteria, ap-
plication of cluster analysis methods may prove unavoidable. 

It is also interesting, to see how all these six charts combine in a single picture, as 
given in Fig. 7.  

 

 

Fig. 7. Combined results for the years 2008–2014, based on dependencies between number of 
pairs in correlation (axis x) and level of positive consonance (axis y). Functions y1 and y2  
approximate the set of plotted points. 

We have further elaborated it by approximating the 72 points with a simple linear 
function, y1, and with a polynomial function of 6th order, y2. The form of both func-
tions was produced with the aid of MS Excel, as follows: 

 y
1
 = 0.0051x + 0.8591, (1) 

 y
2
 = 9e 10x

6
  1e 7x

5
 + 8e 6x

4
  0.0002x

3
 + 0.0028x

2
  0.0203x + 0.8822. (2) 

Although we have already settled to give priority to the results related to positive 
consonance in this example, it is interesting to show also the last result, as obtained 
for the negative consonance. Skipping the charts for the six individual years, we show 
only the combined picture for negative consonance in the following Fig. 8. 
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Fig. 8. Combined results for the years 2008–2014, based on dependencies between number of 
pairs in correlation (axis x) and level of negative consonance (axis y). Functions y1 and y2 ap-
proximate the set of plotted points. 

Again, for approximating the 72 points we use a linear function, y3, and a poly-
nomial function of 6th order, y4, as follows: 

 y3 = 0.0042x + 0.0751, (3) 

 y4 = 3e 12x
6
  4e 10x

5
  6e 8x

4
 + 1e 5x

3
  0.0004x

2
 + 0.009x + 0.0658. (4) 

4 Conclusions 

In the present work, we show that taking into consideration the proximity between the 
intercriteria’s exhibited consonance is a more appropriate approach for shortlisting the 
subset of criteria than taking the first k out of n, as discussed in [6].  

We also propose here to employ trend analysis over the results obtained with the 
application of the InterCriteria Decision Making approach to the examined data from 
the Global Competitiveness Reports of the World Economic Forum. Further research 
in this direction has potential to reveal more knowledge about the nature of the evalu-
ation criteria involved and their future development.  Eventually, these results may 
help policy makers identify and strengthen the transformative forces that will drive 
future economic growth, [9]. 
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