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1 Introduction

In 1983, Atanassov introduced the theory of intuitionistic fuzzy sets (see [1, 2]), which plays
important role in modern mathematics in general as it represents a generalization of fuzzy sets.

The authors in [4] introduced the notion of the intuitionistic fuzzy groups based on the intu-
itionistic fuzzy space. In [3] the notion of fuzzy actions is presented with its properties. From
this idea and taking into account the generalization of the intuitionistic fuzzy theory we will give
sense of the notion of action of a group on a set in the intuitionistic fuzzy frame, which is a very
useful tool in many branches of mathematics and computer science.
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2 Preliminaries

Definition 1. (Triangular norm) A t-norm is any monotonous, commutative, associative mapping
T : [0, 1]× [0, 1] −→ [0, 1] satisfying T (1, x) = x for all x ∈ [0, 1].

Definition 2. (Triangular Conorm) A t-conorm is any monotonous, commutative, associative
mapping S : [0, 1]× [0, 1] −→ [0, 1] satisfying S(0, x) = x for all x ∈ [0, 1].

Note that a fuzzy relation on any set X is a fuzzy set µ : X ×X −→ [0, 1].

Definition 3. [7] An intuitionistic fuzzy set A = (µA, νA) is called an intuitionistic fuzzy relation
on X if µA and νA are fuzzy relations on X with 0 ≤ µA + νA ≤ 1.

Definition 4. [5] An intuitionistic fuzzy relationE = (E1, E2) on a setX (i.e.,E : X×X → L∗),
L∗ =

{
(x, y), 0 ≤ x + y ≤ 1

}
, is a (T, S)-indistinguishability operator on X if and only for all

x, y, z of X satisfies the following properties.

1. E1(x, x) = 1 and E2(x, x) = 0 (Reflexivity)

2. E1(x, y) = E1(y, x) and E2(x, y) = E2(y, x) (Symmetry)

3. T (E1(x, y), E1(y, z)) ≤ E1(x, z) and S (E2(x, y), E2(y, z)) ≥ E2(x, z) (Transitivity).

(T, S)-indistinguishability operators extend the concept of equivalence relation and equal-
ity to the intuitionistic fuzzy framework and they are also called intuitionistic fuzzy (T, S)-
equivalences and intuitionistic fuzzy (T, S)-equality relations. We define the sup-(T, S)-indistin-
guishability operators product between intuitionistic fuzzy relations that will be needed in the
study of intuitionistic fuzzy mappings.

Definition 5. Let X , Y , Z be sets and R : X × Y → L∗ and R′ : Y × Z → L∗ intuitionistic
fuzzy relations. The sup-(T, S) product RoT,SR′ of R and R′ is the intuitionistic fuzzy relation
RoT,SR

′ : X × Z → L∗ defined for all x ∈ X, z ∈ Z by

µRoT,SR′(x, z) = sup
y∈Y

T (R1(x, y), R
′
1(y, z)),

νRoT,SR′(x, z) = inf
y∈Y

S(R2(x, y), R
′
2(y, z)).

Intuitionistic fuzzy mappings generalize the concept of mapping between two sets X and Y.
The sets are supposed to be endowed with (T, S)-indistinguishability operators, and compatibility
of the fuzzy mappings with them is imposed.

Definition 6. Let EX and EY be (T, S)-indistinguishability operators on two sets X and Y,

respectively. R : X × Y → L∗ is an intuitionistic fuzzy mapping from X onto Y if and only if for
all x, x′ ∈ X and for all y, y′ ∈ Y

T (R1(x, y), EX1(x, x
′), EY1(y, y

′)) ≤ R1(x
′, y′)

S (R2(x, y), EX2(x, x
′), EY2(y, y

′)) ≥ R2(x
′, y′)
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T (R1(x, y), R1(x, y)) ≤ EY1(y, y
′)

S (R2(x, y), R2(x, y)) ≥ EY2(y, y
′)

R is perfect if and only if for all x ∈ X there exists y ∈ Y such that R(x, y) = 1L∗ . i.e.,
R1(x, y) = 1 and R2(x, y) = 0.

Definition 7. Let EX and EY be (T, S)-indistinguishability operators on two sets X and Y,

respectively. An intuitionistic fuzzy mapping R from X onto Y is injective if and only if for all x,
x′ ∈ X and for all y, y′ ∈ Y

T (R1(x, y), R1(x
′, y′), EY1(y, y

′)) ≤ EX1(x, x
′)

S(R2(x, y), R2(x
′, y′), EY2(y, y

′)) ≥ EX2(x, x
′)

Definition 8. Let EX = (EX1 , EX1) and EY = (EY1 , EY2) be (T, S)-indistinguishability opera-
tors on two sets X and Y, respectively. Given an intuitionistic fuzzy mapping R from X onto Y ,
the image of R (Im(R)) is given by

µIm(y) = sup
x∈X,y′∈Y

T (R1(x, y
′), EY1(y

′, y))

= sup
x∈X

(νRoT,SR′(x, z))

and

νIm(y) = inf
x∈X,y′∈Y

S(R2(x, y
′), EY2(y

′, y))

= inf
x∈X

(νRoT,SR′(x, z)).

The infimum of the last expression for y ∈ Y, inf
y∈Y
{Im(y)}, is the degree of surjectivity of R is

strongly surjective if and only if its degree of surjectivity is 1.

Definition 9. Let R : X × Y → L∗ and R′ : Y × Z → L∗ be two intuitionistic fuzzy mappings.
The composition of R and R′ is the intuitionistic fuzzy mapping M = R ◦ R′ : X × Z → L∗

defined for all x ∈ X , z ∈ Z by

M(x, z) = (RoT,SEY oT,SR
′) (x, z)

with

M1(x, z) = sup
y,y′∈Y

T (R1(x, y), EY1(y, y
′), R′1(y

′, z))

M2(x, z) = inf
y,y′∈Y

S(R2(x, y), EY2(y, y
′), R′2(y

′, z))

Proposition 1. LetR: X×Y → L∗ andR′ : Y ×Z → L∗ be two intuitionistic fuzzy mappings. If
the composition mapping M = RoR′ is injective and R′ is a perfect mapping, then R is injective.
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Proof. Injectivity of M means

EX1(x, x
′) ≥ T (M1(x, z),M1(x

′, z′), EZ1(z, z
′))

EX2(x, x
′) ≤ S(M2(x, z),M2(x

′, z′), EZ2(z, z
′))

for all x, x′, z, z′ ∈ Z. In particular, for z′ = z we get

EX1(x, x
′) ≥ sup

y,y′,y′′,y′′′∈Y
T
(
a, b, c, d, e, f, g

)
≥ sup

y,y′∈Y
T
(
a, b, c, R1(x

′, y′), EY1(y
′, y′), R′1(y

′, z)
)
,

where a = R1(x, y), b = EY1(y, y
′), c = R′1(y

′, z), d = R1(x
′, y′′), e = EY1(y

′′, y′′′),
f = R′1(y

′′′, z), g = EZ1(z, z) and

EX2(x, x
′) ≤ inf

y,y′,y′′,y′′′∈Y
S
(
a′, b′, c′, d′, e′, f ′, g′

)
≤ inf

y,y′∈Y
S
(
a′, b′, c′, R2(x

′, y′), EY2(y
′, y′), R′2(y

′, z)
)
,

where a′ = R2(x, y), b′ = EY2(y, y
′), c′ = R′2(y

′, z), d′ = R2(x
′, y′′), e′ = EY2(y

′′, y′′′),
f ′ = R′2(y

′′′, z), g′ = EZ2(z, z).
The last inequality follows by considering y′ = y′′ = y′′′. Now, since R′ is perfect, for y′

there exists zy′ with R′(y′, zy′) = 1L∗ and the last expression is greater (smaller) than or equal
(respectively) to

T
(
R1(x, y), R1(x

′, y′), EY1(y, y
′)
)
,(

R2(x, y), R2(x
′, y′), EY2(y, y

′)
)
,

which means injectivity of R.

Definition 10. Let R : X × Y → L∗ and R′ : Y ×X → L∗ be two intuitionistic fuzzy mappings.
R is the inverse fuzzy mapping of R1 (and vice versa) if and only if

T (R′1(x, y), EY1(y, y
′), R′1(y

′, x′)) ≤ EX1(x, x
′),

S (R2(x, y), EY2(y, y
′), R′2(y

′, x′)) ≥ EX2(x, x
′),

T (R′1(y, x), EX1(x, x
′), R1(x

′, y′)) ≤ EY1(y, y
′),

S (R′2(y, x), EX2(x, x
′), R2(x

′, y′)) ≥ EY2(y, y
′).

Definition 11. Let R be an intuitionistic fuzzy relation R : X × Y → L∗. The inverse relation R′

of R (usually denoted by R−1) is the intuitionistic fuzzy relation R′ : Y ×X → L∗ defined for all
x ∈ X, y ∈ Y by R′(y, x) = R(x, y).

Proposition 2. If R : X × Y → L∗ and R−1 : Y × X → L∗ are both intuitionistic fuzzy
mappings, then

a) R is the inverse mapping of R−1.
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b) R and R−1 are injective.

Proof. a)

T
(
R1(x, y), EY1(y, y

′), R−11 (y′, x′)
)

= T (R1(x, y), EY1(y, y
′), R1(x

′, y′))

≤ EX1(x, x
′)

T
(
R−11 (y, x), EX1(x, x

′), R1(x
′, y′)

)
= T (R−11 (y, x), EX1(x, x

′), R1(x
′, y′))

≤ EY1(y, y
′)

and

S
(
R2(x, y), EY2(y, y

′), R−12 (y′, x′)
)

= S (R2(x, y), EY2(y, y
′), R2(x

′, y′))

≥ EX2(x, x
′)

S(R−12 (y, x), EX2(x, x
′), R2(x

′, y′)) = S(R−12 (y, x), EX2(x, x
′), R2(x

′, y′))

≥ EY2(y, y
′).

b)

T (R1(x, y), R1(x
′, y′), EY1(y, y

′)) = T (R1(x, y), R
−1
1 (y′, x′), EY1(y, y

′))

≤ EX1(x, x
′)

T
(
R−11 (y, x), R−11 (y′, x′), EX1(x, x

′)
)

= T
(
R−11 (y, x), R1(x

′, y′), EX1(x, x
′)
)

≤ EY1(y, y
′)

and

S (R2(x, y), R2(x
′, y′), EY2(y, y

′)) = S
(
R2(x, y), R

−1
2 (y′, x′), EY2(y, y

′)
)

≥ EX2(x, x
′)

S
(
R−12 (y, x), R−12 (y′, x′), EX2(x, x

′)
)

= S
(
R−12 (y, x), R2(x

′, y′), EX2(x, x
′)
)

≥ EY2(y, y
′).

This completes the proof.

3 Intuitionistic fuzzy actions

The concept of actions of a group fuzzified by Boixader and Recasens [3]. In [6], Tarsuslu et al.
introduced intuitionistic fuzzy actions of a group on a set by extending definition to the lattice
[0, 1]× [0, 1]. In our study, we introduced this notion of intuitionistic fuzzy actions of a group on
a set by using t-norm and t-conorm.

Definition 12. LetG be a monoid with neutral element e and I be a non-empty set. α : G×I → I

is an action of G on I if and only if for all g, h ∈ G, x ∈ I

1. (hg)x = h(gx),

2. ex = x,

where α(g, x) is denoted by gx.
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Definition 13. Let G be a monoid with neutral element e, I be a non-empty set and (T, S) be a
t-norm. α : G × I × I → L∗ is a (T, S)-intuitionistic fuzzy action (or simply an intuitionistic
fuzzy action) of G on I if and only if for all g, h ∈ G, x ∈ I

1. T (α1(hg, x, y), α1(g, x, z)) ≤ α1(h, z, y)

2. S(α2(hg, x, y), α2(g, x, z)) ≥ α2(h, z, y)

3. T (α1(g, x, z), α1(h, z, y)) ≤ α1(hg, x, y)

4. S(α2(g, x, z), α2(h, z, y)) ≥ α2(hg, x, y)

and α(e, x, x) = 1L∗ , i.e., α1(e, x, x) = 1 and α2(e, x, x) = 0.

Definition 14. An intuitionistic fuzzy action α is quasi-perfect if and only if for all g ∈ G, x ∈ I
there exists y ∈ I such that α(g, x, y) = 1L∗ . α is perfect if and only if the previous y is unique
for each g ∈ G and x ∈ X.

Lemma 1. Let α be an intuitionistic fuzzy action of G on X. If for g ∈ G and x, y,
y′ ∈ Iα(g, x, y) = α(g, x, y′) = 1L∗ , then α(e, y, y′) = 1L∗ .

Proof. From 1., 2. of Definition 13

1 = T
(
α1(g, x, y), α1(g, x, y

′)
)
≤ α1(e, y, y

′),

0 = S
(
α2(g, x, y), α2(g, x, y

′)
)
≥ α2(e, y, y

′).

Given a quasi-perfect intuitionistic fuzzy action α of G on I we can consider the (crisp)
equivalence relation∼ on I defined by x ∼ y if and only if α(e, x, y) = 1L∗ , and the fuzzy action
α of G on I = I/ ∼ defined by α(g,X, y) = α(g, x, y).

Proposition 3. Let α be an intuitionistic fuzzy action of G on X. ∼ is an equivalence relation, α
is well defined and is an intuitionistic fuzzy action of G on I = I/ ∼ .

Proof.
Reflexivity: x ∼ x, because α(e, x, x) = 1L∗ .

Symmetry:

1 = α1(e, x, y) = T (α1(e, x, x), α1(e, x, y)) ≤ α1(e, y, x)

0 = α2(e, x, y) = S(α2(e, x, x), α2(e, x, y)) ≥ α2(e, y, x)

by Property 1) and 2).
Transitivity: x ∼ y and y ∼ z, then

1 = T (α1(e, x, y), α1(e, y, z)) ≤ α1(e, x, z)

0 = S(α2(e, x, y), α2(e, y, z)) ≥ α2(e, x, z)
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by Property 3) and 4).
In order to prove that α is well defined, we must show that if

α(e, x, x′) = 1L∗ and α(e, y, y′) = 1L∗ , then α(g, x, y) = α(g, x′, y)

α1(g, x, y) = T (α1(g, x, y), α1(e, x, x
′)α1(e, y, y

′))

= T (α1(g, x, y), α1(e, x
′, x), α1(e, y, y

′))

≤ α1(g, x
′, y′)

by symmetry we have α1(g, x, y) = α1(g, x
′, y). And we have

α2(g, x, y) = S(α2(g, x, y), α2(e, x, x
′)α2(e, y, y

′))

= T (α2(g, x, y), α2(e, x
′, x), α2(e, y, y

′))

≥ α2(g, x
′, y′)

By symmetry we have α2(g, x, y) = α2(g, x
′, y). Then α(g, x, y) = α(g, x′, y). It is straightfor-

ward to prove that α is an intuitionistic fuzzy action.

This result allows us to restrict the study of quasi-perfect intuitionistic fuzzy actions to perfect
ones.

Proposition 4. If α is a perfect intuitionistic fuzzy action of G on I and, for g ∈ G and
x ∈ I, xg ∈ I is the unique element of I such that α(g, x, xg) = 1L∗ , then gx = xg is a crisp
action.

Proof. Straightforward.

Reciprocally, it will be shown in Proposition 13 how to fuzzify crisp actions to obtain perfect
intuitionistic fuzzy ones. From now on, we will assume that G is a group.

Lemma 2. If α is an intuitionistic fuzzy action of G on I, h ∈ G and x, z ∈ I , then
α(h−1, x, z) = α(h, z, x) .

Proof. From 1. and 2. in Definition 13

T (α1(hh
−1, x, y), α1(h

−1, x, z)) ≤ α1(h, z, y)

and
S(α2(hh

−1, x, y), α2(h
−1, x, z)) ≥ α2(h, z, y),

or
T (α1(e, x, y), α1(h

−1, x, z)) ≤ α1(h, z, y)

and
S(α2(e, x, y), α2(h

−1, x, z)) ≥ α2(h, z, y).
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In particular, taking y = x,

T (α1(e, x, x), α1(h
−1, x, z)) = α1(h

−1, x, z) ≤ α1(h, z, x)

and
S(α2(e, x, x), α2(h

−1, x, z)) = α2(h
−1, x, z) ≥ α2(h, z, x)

and the result follows by symmetry.

α(e, x, y) provides the degree to which y is the transformed of x by the identity element e ofG.
It will then measure the degree in which we can consider x and y as equivalent or indistinguishable
objects and will reflect the granularity on I . In fact, this relation is a (T, S)-indistinguishability
operator as it will be proved in Proposition 5.

Definition 15. Let α be an intuitionistic fuzzy action ofG on I.El = (El1 , El2) is the intuitionistic
fuzzy relation on I defined for all x, y ∈ I by El(x, y) = α(e, x, y), i.e., El1(x, y) = α1(e, x, y)

and El2(x, y) = α2(e, x, y).

Proposition 5. El is a (T, S)-indistinguishability operator.

Proof.
Reflexivity:

El(x, x) = α(e, x, x) = 1L∗ .

Symmetry:
El1(x, y) = α1(e, x, y) = α1(e, y, x) = El1(y, x).

and
El2(x, y) = α2(e, x, y) = α2(e, y, x) = El2(y, x).

Then
El(x, y) = α(e, x, y) = α(e, y, x) = El(y, x).

(T, S)-transitivity:

T (El1(x, y), El1(y, z)) = T (α1(e, x, y), α1(e, y, z))

≤ α1(e, x, z) = El1(x, z)

and

S(El2(x, y), El2(y, z)) = S(α2(e, x, y), α2(e, y, z))

≥ α2(e, x, z) = El2(x, z).

The inequality follows from 3. and 4. in Definition 13

For a crisp action, fixing g, the map fg : I → I defined by fg(x) = gx is a bijection. The
generalization of this result is the next.
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Definition 16. Let α : G × I × I → L∗ be an intuitionistic fuzzy action. Fixing g ∈ G, the
intuitionistic fuzzy relation Rg : I × I → L∗ is defined for all x, y ∈ I by

Rg(x, y) = α(g, x, y).

Proposition 6. The intuitionistic fuzzy relation Rg = (Rg1 , Rg2) is an injective fuzzy mapping
with respect to the (T, S)-indistinguishability operator El.

Proof.

T (Rg1(x, y), El1(x, x
′), El1(y, y

′)) = T (α1(g, x, y), α1(e, x, x
′), α1(e, y, y

′))

= T (α1(g, x, y), α1(e, x
′, x), α1(e, y, y

′))

≤ α1(g, x
′, y′) = Rg1(x

′, y′)

and

S(Rg2(x, y), El2(x, x
′), El2(y, y

′)) = S(α2(g, x, y), α2(e, x, x
′), α2(e, y, y

′))

= S(α2(g, x, y), α2(e, x
′, x), α2(e, y, y

′))

≥ α2(g, x
′, y′) = Rg2(x

′, y′).

T (Rg1(x, y), Rg1(x, y
′)) = T (α1(g, x, y), α1(g, x, y

′))

= T (α1(g
−1, y, x), α1(g, x, y

′))

≤ α1(e, y, y
′) = El1(y, y

′)

and

S(Rg2(x, y), Rg2(x, y
′)) = S(α2(g, x, y), α2(g, x, y

′))

= S(α2(g
−1, y, x), α2(g, x, y

′))

≥ α2(e, y, y
′) = El2(y, y

′).

Injectivity:

T (Rg1(x, y), Rg1(x
′, y′)Eα1(y, y

′)) = T (α1(g, x, y), α1(g, x
′, y′), Eα1(y, y

′))

= T (α1(g, x, y), α1(g
−1, y′, x), α1(e, y, y

′))

≤ T (α1(g, x, y
′), α1(g

−1, y′, x′))

≤ α1(e, x, x
′) = El1(x, x

′))

and

S(Rg2(x, y), Rg2(x
′, y′)Eα2(y, y

′)) = S(α2(g, x, y), α2(g, x
′, y′), Eα2(y, y

′))

= S(α2(g, x, y), α2(g
−1, y′, x), α2(e, y, y

′))

≥ S(α2(g, x, y
′), α2(g

−1, y′, x′))

≥ α2(e, x, x
′) = El2(x, x

′)).
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Proposition 7. Rg and Rg−1 are inverse mappings.

Proof.

T (Rg1(x, y), El1(y, y
′)Rg−1

1
(y′, x′)) = T (α1(g, x, y), α1(e, y, y

′), α1(g
−1, y′, x′))

≤ T (α1(g, x, y), α1(g
−1, y, x′))

≤ α1(e, x, x
′) = El1(x, x

′))

and

S(Rg2(x, y), El2(y, y
′)Rg−1

2
(y′, x′)) = S(α2(g, x, y), α2(e, y, y

′), α2(g
−1, y′, x′))

≥ S(α2(g, x, y), α2(g
−1, y, x′))

≥ α2(e, x, x
′) = El2(x, x

′)).

T (Rg−1
1
(y, x), El1(x, x

′), Rg1(x
′, y′)) = T (α1(g

−1, y, x), α1(e, x, x
′), α1(g, x

′, y′))

≤ T (α1(g
−1, y, x′), α1(g, x

′, y′))

≤ α1(e, y, y
′) = El1(y, y

′))

and

S(Rg−1
2
(y, x), El2(x, x

′), Rg2(x
′, y′)) = S(α2(g

−1
1 , y, x), α2(e, x, x

′), α2(g, x
′, y′))

≥ S(α2(g
−1, y, x′), α2(g, x

′, y′))

≥ α2(e, y, y
′) = El2(y, y

′)).

In a (crisp) action, we intend to consider as equivalent the elements that are equal but for the
action of an element g ∈ G, so that two elements x and y of I are considered equivalent if and
only if there exists g ∈ G such that y = gx. The next definition fuzzifies this idea.

Definition 17. Given an intuitionistic fuzzy action α, we define the intuitionistic fuzzy relation
Eα = (Eα1 , Eα2) on I by Eα1(x, y) = sup

g∈G
α(g, x, y) and Eα2(x, y) = inf

g∈G
α(g, x, y) for all

x, y ∈ I.

Proposition 8. If T is a left continuous t-norm, then Eα is a (T, S)-indistinguishability operator
on I.

Proof.
Reflexivity:

Eα1(x, x) = sup
g∈G

α1(g, x, x) ≥ α1(e, x, x) = 1

and
Eα2(x, x) = inf

g∈G
α2(g, x, x) ≤ α2(e, x, x) = 0.

20



Symmetry:

Eα1(y, x) = sup
g∈G

α1(g, y, x) = sup
g∈G

α1(g
−1, x, y) = sup

g∈G
α1(g, x, y) = Eα1(x, y)

and
Eα2(y, x) = sup

g∈G
α2(g, y, x) = inf

g∈G
α2(g

−1, x, y) = inf
g∈G

α2(g, x, y) = Eα2(x, y).

(T, S)-transitivity:

T (Eα1(x, y), Eα1(y, z)) = T (sup
g∈G

α1(g, x, y), sup
h∈G

α1(h, y, z))

= sup
g,h∈G

T (α1(g, x, y), α1(h, y, z))

≤ sup
g,h∈G

α1(hg, x, z)

= Eα1(x, z)

and

S(Eα2(x, y), Eα2(y, z)) = T ( inf
g∈G

α2(g, x, y), inf
h∈G

α2(h, y, z))

= inf
g,h∈G

S(α2(g, x, y), α2(h, y, z))

≥ inf
g,h∈G

α2(hg, x, z)

= Eα2(x, z)

The inequalities follows from 3. and 4. in Definition 13.

Definition 18. Fixing x ∈ I , the columns µx, and µx, of Eα (i.e., the intuitionistic fuzzy set
νx(y) = Eα1(x, y), νx(y) = Eα2(x, y)) is the intuitionistic fuzzy orbit of x.

The intuitionistic fuzzy orbit of x ∈ I is therefore the intuitionistic fuzzy equivalence class of
x with respect to Eα.

Proposition 9. Let α = (α1, α2) such that α1 : G × I × I → [0, 1] and α2 : G × I × I →
[0, 1] be an intuitionistic fuzzy action. For each g ∈ G, the intuitionistic fuzzy relation Rg is
an injective intuitionistic fuzzy mapping with respect to the T, S-indistinguishability operator
Eα = (Eα1 , Eα2).

Proof.

T (Rg1(x, y), Eα1(x, x
′), Eα1(y, y

′)) ≤ T (sup
l∈G

α1(l, x, y), sup
h∈G

α1(h, x, x
′), sup

k∈G
α1(k, y, y

′))

= T (Eα1(x, y), Eα1(x, x
′), Eα1(y, y

′))

≤ Eα1(x
′, y′)

and

S(Rg2(x, y), Eα2(x, x
′), Eα2(y, y

′)) ≥ S(inf
l∈G

α2(l, x, y), inf
h∈G

α2(h, x, x
′), inf

k∈G
α2(k, y, y

′))

= S(Eα2(x, y), Eα2(x, x
′), Eα2(y, y

′))

≥ Eα2(x
′, y′).
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T (Rg1(x, y), Rg1(x, y
′)) = T (α1(g, x, y), α1(g, x, y

′))

≤ T (Eα1(x, x
′), Eα1(x, y

′))

≤ Eα1(y, y
′)

and

S(Rg2(x, y), Rg2(x, y
′)) = S(α2(g, x, y), α2(g, x, y

′))

≥ S(Eα2(x, x
′), Eα2(x, y

′))

≥ Eα2(y, y
′).

Injectivity:

T (Rg1(x, y), Rg1(z, t), Eα1(y, t)) = T (α1(g, x, y), α1(g, z, t), Eα1(y, t))

≤ T (Eα1(x, y), Eα1(z, t), Eα1(y, t))

≤ Eα1(x, z)

and

S(Rg2(x, y), Rg2(z, t), Eα2(y, t)) = S(α2(g, x, y), α2(g, z, t), Eα2(y, t))

≥ S(Eα2(x, y), Eα2(z, t), Eα2(y, t))

≥ Eα2(x, z).

Considering an action α on a set I , useful (intuitionistic fuzzy or crisp) relations on I should
be compatible with it in the sense that they should be invariant under the effect of the action α.

Definition 19. Let α be a crisp action on I . An intuitionistic fuzzy relation R on I is invariant
under α if and only if

R(x, y) = R(α(g, x), α(g, y))

for all g ∈ G, x, y ∈ I.

For intuitionistic fuzzy actions, the previous definition can be generalized as follows.

Definition 20. Let α be an intuitionistic fuzzy action of G on I and R be an intuitionistic fuzzy
relation on I . R is invariant under α if and only if

T (R1(x, y), α1(g, x, x
′), α1(g, y, y

′)) ≤ R1(x
′, y′)

and
S(R2(x, y), α2(g, x, x

′), α2(g, y, y
′)) ≥ R2(x

′, y′)

for all g ∈ G, x, y, x′, y′ ∈ I .
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Proposition 10. El is invariant under α.

Proof.

T (El1(x, y), α1(g, x, x
′), α1(g, y, y

′)) = T (α1(e, x, y), α1(g, x, x
′), α1(g, y, y

′))

≤ T (α1(g, x, y
′)α1(g, x, x

′))

= T (α1(g
−1, y′, x), α1(g, x, x

′))

≤ α1(e, y
′, x′) = El1(x

′, y′)

and

S(El2(x, y), α2(g, x, x
′), α2(g, y, y

′)) = S(α2(e, x, y), α2(g, x, x
′), α2(g, y, y

′))

≥ S(α2(g, x, y
′)α2(g, x, x

′))

= S(α2(g
−1, y′, x), α2(g, x, x

′))

≥ α2(e, y
′, x′) = El2(x

′, y′).

Proposition 11. El is the smallest (T, S)-indistinguishability operator on X invariant under α.

Proof. If E is a (T, S)-indistinguishability operator on I invariant under α, then for all x, x′, y,
y′ ∈ I and g ∈ G,

T (E1(x, y), α1(g, x, x
′), α1(g, y, y

′)) ≤ E1(x
′, y′)

and
S(E2(x, y), α2(g, x, x

′), α2(g, y, y
′)) ≥ E2(x

′, y′).

In particular,
T (E1(x, y), α1(e, x, x

′), α1(e, y, y
′)) ≤ E1(x

′, y′)

T (E1(x, y), El1(x, x
′), El1(y, y

′),≤ E1(x
′, y′)

and
S(E2(x, y), α2(e, x, x

′), α2(e, y, y
′)) ≥ E2(x

′, y′)

S(E2(x, y), El2(x, x
′), El2(y, y

′),≥ E2(x
′, y′).

Putting x = y = x′,

T (E1(x, x), El1(x, x), El1(x, y
′),≤ E1(x, y

′)

S(E2(x, x), El2(x, x), El2(x, y
′),≥ E2(x, y

′)

and hence El1(x, y
′) ≤ E2(x, y

′) and El2(x, y
′) ≥ E2(x, y

′).

Nota Bene. In fact, we have only used reflexivity ofE in the proof, so that states thatEl is smaller
than or equal to any reflexive intuitionistic fuzzy relation of I invariant under α.
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Proposition 12. Eα is invariant under α.

Proof. α1(g, x, x
′) ≤ Eα1(x, x

′) and α1(g, y, y
′) ≤ Eα1(y, y

′) and hence

T (Eα1(x, y), α1(g, x, x
′), α1(g, y, y

′)) ≤ T (Eα1(x, y), Eα1(x, x
′), Eα1(y, y

′))

≤ Eα1(x
′, y′).

and α2(g, x, x
′) ≤ Eα2(x, x

′) and α2(g, y, y
′) ≤ Eα1(y, y

′) and hence

S(Eα2(x, y), α2(g, x, x
′), α2(g, y, y

′)) ≥ S(Eα2(x, y), Eα2(x, x
′), Eα2(y, y

′))

≥ Eα2(x
′, y′).

By the previous result it is easy to demonstrate the following corollary.

Corollary 1. We have EI ≤ Eα.

In Proposition 4 we have proved that a perfect intuitionistic fuzzy action generates a crisp
action in a natural way. Reciprocally, from a crisp intuitionistic fuzzy action and a (T, S)-
indistinguishability operator invariant under this action an intuitionistic fuzzy action can be ob-
tained again in a natural way.

Proposition 13. Let E be a (T, S)-indistinguishability operator on a set X invariant under the (
crisp) action x→ gx of a group G on I. The mapping α : G× I × I → L∗ defined for all g ∈ G
and for all x, y ∈ I by α(g, x, y) = E(gx, y) is a perfect intuitionistic fuzzy action of G on I .
Moreover, E(x, y) = α(e, x, y) = El(x, y) .

Proof. We have

T (α1(hg, x, y), α1(g, x, z)) = T (E1(hgx, y), E1(gx, z))

= T (E1(hgx, y), E1(hgx, hz))

≤ E1(hz, y) = α1(h, z, y).

and

T (α1(g, x, z), α1(h, z, y)) = T (E1(gx, z), E1(hz, y))

= T (E1(hgx, hz), E1(hz, y)

≤ E1(hgx, y) = α1(hg, x, y).

α1(e, x, x) = 1 = E1(ex, x) = E1(x, x) = 1.

α is perfect.
α1(g, x, gx) = E1(gx, gx) = 1.
E1(x, y) = α1(e, x, y) = El1(x, y) .
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Proposition 14. Fixing x ∈ I , the intuitionistic fuzzy subset (µ, ν) of G defined by

µ(g) = α1(g, x, x),

ν(g) = α2(g, x, x)

is an intuitionistic fuzzy subgroup of G with µ(e) = 1 and ν(e) = 0, where e is the identity
element of G.

Proof.

T (µ(g), µ(h)) = T (α1(g, x, x), α1(h, x, x)) ≤ α1(gh, x, x) = µ(gh)

µ(g) = α1(g, x, x) = α1(g
−1, x, x) = µ(g−1)

µ(e) = α1(e, x, x) = 1

and

S(ν(g), ν(h)) = S(α2(g, x, x), α2(h, x, x)) ≥ α2(gh, x, x) = ν(gh)

ν(g) = α2(g, x, x) = α2(g
−1, x, x) = ν(g−1)

ν(e) = α2(e, x, x) = 0.

Definition 21. (µ, ν) is the isotropy intuitionistic fuzzy subgroup of x ∈ I .

It is easy to prove the following proposition.

Proposition 15. If (µ, ν) is the isotropy intuitionistic fuzzy subgroup of x ∈ I , then the intuition-
istic fuzzy relation Ex on G defined for all g, h ∈ G by

Ex1(g, h) = µ(gh−1),

Ex2(g, h) = ν(gh−1)

is a (T, S)-indistinguishability operator on G.

Proposition 16. Let α be an intuitionistic fuzzy action of G on I . If the t-norm is left continuous,
then the intuitionistic fuzzy subset (µ, ν) of G defined by

µ(g) = inf
x∈I

α1(g, x, x),

ν(g) = sup
x∈I

α2(g, x, x)

is an intuitionistic fuzzy subgroup of G with (µ, ν)(e) = 1L∗ where e is the identity element of G.

Proof.

T (µ(g), µ(h)) = T (inf
x∈I

α1(g, x, x), inf
y∈I

α1(h, y, y))

= inf
x,y∈I

T (α1(g, x, x), α1(h, y, y))

≤ inf
x∈I

T (α1(g, x, x), α1(h
−1, x, x))

≤ inf
x∈I

α1(gh
−1, x, x) = µ(gh−1).

µ(e) = inf
x∈I

α1(e, x, x) = 1

and
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S(ν(g), ν(h)) = S(sup
x∈I

α2(g, x, x), sup
y∈I

α2(h, y, y))

= sup
x,y∈I

T (α2(g, x, x), α2(h, y, y))

≥ sup
x∈I

T (α2(g, x, x), α2(h
−1, x, x))

≥ sup
x∈I

α2(gh
−1, x, x) = ν(gh−1).

ν(e) = sup
x∈I

α2(e, x, x) = 0.

4 Conclusion

This work completes some properties of the concept of intuitionistic fuzzy action already pro-
posed in [6].

References

[1] Atanassov, K. (1983) Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983
(Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.

[2] Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.

[3] Boixader, D., & Recasens, J. (2018) Fuzzy actions, Fuzzy Sets and Systems, 339, 17–30.

[4] Fathi, M. & Saleh, A. R. (2009) Intuitionistic fuzzy group, Asian Journal of Algebra, 2 (1),
1–10.

[5] Hur, K., Jang, S. Y. & Ahn, Y. S. (2005) Intuitionistic fuzzy equivalence relations, Honam
Math. J., 27 (2), 163–181.

[6] Tarsuslu, S., Tarsuslu, A. & Citil, M. (2018) Intuitionistic fuzzy action of a group on a set,
Notes on Intuitionistic Fuzzy Sets, 24 (2), 18–24.

[7] Dudek, W. A., Zhan, J., & Davvaz, B. (2008) Intuitionistic (S, T )-fuzzy hyperquasigroups,
Soft Comput., 12, 1229–1238.

26


