
20

NIFS 13 (2007), 1, 20-33

Representation of Null Values with the Aid H-IFS

Panagiotis Chountas

HSCS – University of Westminster, London, HA1 3TP, UK
chountp@wmin.ac.uk

Abstract. Here, we present a way to replace unknown values using background
knowledge of data that is often available arising from a concept hierarchy, as
integrity constraints, from database integration, or from knowledge possessed by
domain experts. We present and examine the case of H-IFS to represent support
contained in subsets of the domain as a candidate for replacing unknown values
mostly referred in the literature as NULL values.

Keywords: Null values, Intuitionistic Fuzzy Sets, Knowledge Representation

1 Introduction

Background knowledge of data is often available, arising from a concept hierarchy, as
integrity constraints, from database integration, or from knowledge possessed by domain
experts. Frequently integrated DBMSs contain incomplete data which we may represent by
using H-IFS to declare support contained in subsets of the domain. These subsets may be
represented in the database as partial values, which are derived from background knowledge
using conceptual modelling to re-engineer the integrated DBMS. For example, we may know
that the value of the attribute JOB-DESCRIPTION is unknown for the tuple relating to
employee Natalie but also know from the attribute salary that Natalie receives an estimated
salary in the range of €25K ~Salary25K. A logic program, using a declarative language can
then derive the result that Natalie is a “Junior-Staff”, which we input to the attribute JOB-
DESCRIPTION of tuple Natalie in the re-engineered database. In such a manner we may use
the knowledge base to replace much of the unknown in the integrated database environment.

Generalised relations have been proposed to provide ways of storing and retrieving data.
Data may be imprecise, hence we are not certain about the specific value of an attribute but
only that it takes a value which is a member of a set of possible values. An extended relational
model for assigning data to sets has been proposed by [1]. This approach may be used either
to answer queries for decision making or for the extraction of patterns and knowledge
discovery from relational databases. It is therefore important that appropriate functionality is
provided for database systems to handle such information.

A model, which is based on partial values [2], has been proposed to handle imprecise data.
Partial values may be thought of as a generalisation of null values where, rather than not
knowing anything about a particular attribute value, we may identify the attribute as a set of
possible values. A partial value is therefore a set such that exactly one of the values in the set
is the true value.

21

We review the different types of NULL values and then we focus is on providing an
integrated DBMS environment that will enable us to:

• reconcile unknown information with the aid of background knowledge. We examine
the appropriateness of the H-IFS as a form of Background knowledge for replacing
unknown attribute values

• utilise constraints as part of the integrated DBMS metadata to improve query
execution

• query imprecise information a part of integrated DBMS environment that may entail
more than one sources of information

2 Review of NULL Values

A null value represents an unknown attribute value, is a value that is known to exist, but the
actual value is unknown. The unknown value is assumed to be a valid attribute value, that is,
some value in the domain of that attribute. This is a very common kind of ignorant
information. For example, in an employee database, while everyone must have a surname,
Alex’s surname may be recorded as unknown. The unknown value indicates that Alex has a
name, but we do not know her name. An unknown value has various names in the literature
including unknown null [3], missing null [4], and existential null [5].

The meaning of a fact, F, with an unknown attribute value over an attribute domain of
cardinality N is a multiset with N members; each member is a set containing an F instance
with the unknown value being replaced by a different value from the attribute domain. For
example, assume f = {IBM (⊥)} where (⊥ represents an unknown value over a domain {20,
22} with respect to IBM’s share-price), then the meaning of f is

f = {{IBM (20)}, {IBM (22)}}
This corresponds to the notion that a fact with an unknown value is incomplete with respect

to a fact where that unknown value is no longer unknown, but is now known to be a specific
value (i.e. f1 = {{IBM (20)}).

Another generalization of an unknown fact is a disjunctive fact [6], so known as indefinite
information [7]. A disjunction is a logical or applied to fact instances. Let F be an inclusive
disjunctive fact with N disjuncts. The meaning of F is given by a multiset with N members;
each member is a set containing one disjunct. For example, the share price of IBM may be
£20 or £22. (i.e.” IBM (20), IBM (22)”). The disjunction is exclusive [8] or inclusive [9]. If it
is an exclusive disjunction, one and only one disjunct is true. The meaning of an exclusive
disjunctive fact is the same as that of an imprecise value. Let f = {{IBM (20)}, {IBM (22)}}
be an exclusive disjunctive then the meaning of f is f = {IBM (20)}∨ {IBM (22)}.

The meaning of an inclusive disjunctive fact is somewhat different than that of its exclusive
complement, at least one alternative may be true. Let F be an inclusive disjunctive fact with N
disjuncts. The meaning of F is given by a multiset with 2N-1 members; each member is a
unique subset of disjuncts. For example, assume, the inclusive disjunct f = {IBM (20) {IBM
(22)} then the meaning of f, is f = {{IBM (20)}, {IBM (22)}, {IBM (20), IBM (22)}},
excluding the fact, {{IBM (⊥)}. The empty (⊥) attribute represents the situation where a fact
instance exists, but does not have a particular attribute-label value.

A maybe value is an attribute-label value which might or might not exist [10]. If it does
exist, the value is known. A maybe tuple or fact-instance is similar to a maybe value, but the

22

entire tuple might not be part of the relation. Maybe tuples are produced when one disjunct of
an inclusive disjunctive fact-instance is found to be true.

A combination of inclusive disjunctive fact instance and a maybe fact instance can
determine the semantics of open information or nulls [11]. The denotation of an open null is
exact to inclusive disjunctive information with the addition of the empty set as a possible
value. That is the attribute-lable value may not exist, could be exactly one value, or could be
many values. For example, in the shares database an open value could be used to present IBM
share prices. This value means that IBM share price possibly had a past record, (this could be
the first appearance in the market); IBM share price may be one or many. The open value
covers all this possibilities. A generalization of open information is possible information [12]
(this differs from our use of the term “possible”). Possible information is an attribute value
whose existence is undetermined, but if it does exist, it could be multiple values from a subset
of the attribute domain.

A no information value is a combination of an open value and an unknown value [13]. The
no information value restricts an open value to resemble an unknown value. A, no information
value might not exist, but if it does, then it is a single value, which is unknown, rather than
possibly many values. The meaning of a no information value is similar to that of an unknown
value with the inclusion of the addition of the empty set as a possible value.

Unknown, partially known, open, no information, and maybe null values are different
interpretations of a null value. There are other null value interpretations, but none of these is a
kind of well cognisant information.

An inapplicable or does not exist null is a very common null value. An inapplicable null,
appearing as an attribute value, means that an attribute does not have a value [14]. An
inapplicable value neither contains nor represents any ignorance; it is known that the attribute
value does not exist. Inapplicable values indicate that the schema (usually for reasons of
efficiency or clarity) does not adequately model the data. The relation containing the
inapplicable value can always be decomposed into an equivalent set of relations that do not
contain it. Hence the presence of inapplicable values indicates inadequacies in the schema, but
does not imply that information is being incompletely encoded.

Open nulls is the main representative of the possible-unweighted–unrestricted branch.
Universal nulls may also be classified under this branch assuming the OWA semantics.
Inclusive disjunctive information, possible information and maybe tuples or values are
indicative representatives of the possible-unweighted-restricted school.

In [15] five different types of nulls are suggested. The labels and semantics of them are
defined as follows. Let V be a function, which takes a label and returns a set of possible
values that the label may have.

Label (X) V(X)

Ex-mar D
Ma-mar D ∪ {⊥}
Pl-mar {⊥}
Par-mar (Vs) Vs
Pm-mar (Vs) Vs ∪ {⊥}

Fig. 1. Types of NULL and their semantics

Intuitively, V (Ex-mar) = D says that the actual value of an existential marker can be any
member of the domain D. Likewise, V (Ma-mar) = D ∪ {⊥} says that the actual value of a

23

maybe marker can be either any member of D, or the symbol ⊥, denoting a non-existent
value. Similarly, V (Par-mar (V s)) = Vs says that the actual value of a partial null marker of
the form pa mar (Vs) lies in the set Vs, a subset of the domain D.

An important issue is the use of ⊥, which denotes that an attribute is inapplicable. However
such an interpretation of the unknown information, is not consistent with the principles of
conceptual modelling. Assuming the sample fact spouse, the individual, Tony, is a bachelor
and hence, the wife field is inapplicable to him, ⊥. Conceptually the issue can be resolved
with the use of the subtypes (e.g. married, unmarried) as part of the entity class Person. A
subtype is introduced only when there is at least one role recorded for that subtype. The
conceptual treatment of null will permit us to reduce the table in Fig.1 using only two types of
null markers.

Label (X) V(X)

V-mar (V) {V}
P-mar (Vs) {Vs}
Π-mar (D-Vs) {D –Vs}

Fig. 2. The reduced set of NULL values

In the general case the algebraic issue under the use of subtypes is whether the population
of the subtypes in relationship to the super type is:
• Total and Disjoint: Populations are mutually exclusive and collectively exhaustive.
• Non-Total and Disjoint: Populations are mutually exclusive but not exhaustive.
• Total and Overlapping: Common members between subtypes and collectively exhaustive,

in relationship to super type.
• Non-Total and Overlapping: Common members between subtypes and not collectively

exhaustive, in relationship to super type.
Conclusively it can be said that a null value is often semantically overloaded to mean either

an unknown value or an inapplicable. For an extensive coverage of the issues related to the
semantic overloading of null values somebody may further refer to [16].

3 NULL Values & Background Knowledge in DBMS

In a generalised relational database we consider an attribute A and a tuple ti of a relation R in
which n attribute value ti[A] may be a partial value. A partial value is formally defined as
follows.

Definition 3.1 A partial value is determined by a set of possible attribute values of tuple t
of attribute A of which one and only one is the true value. We denote a partial value by P =
[a1,...,an] corresponding to a set of P possible values {a1,... , an} of the same domain, in which
exactly one of these values is the true value of . Here, P is the cardinality of {a1,... , an} is a
subset of the domain set {a0,... , an+1} of attribute A of relation R, and P ≤ n+1.

Queries may require operations to be performed on partial values; this can result in a query
being answered by means of bags, where the tuples have partial attribute values [17].

Example 3.1 We consider the attribute JOB_DESCRIPTION that has possible values
'Research Associate', 'Teaching Associate', ‘Programmer’, 'Junior Staff', and 'Senior Staff'.
Then {'Junior Staff', 'Senior Staff'}, is an example of a partial value in terms of classical logic.

24

In this case we know only that the individual is a staff but not whether he or she is a junior
staff or a senior staff.

Definition 3.2 An Intuitionistic Fuzzy partial value relation R, is a relation based on partial
values for domains D1, D2,..., Dn of attributes A1, A2,..., An where R ⊆ P1 x P2 x x Pn and Pi is
the set of all the partial values on power set of domain Di. A pruned value of attribute Ai of
the relation R corresponds then to a H-IFS which is a subset of the domain Di. An example of
a partial value relation is presented in Table 1 below:

Table 1. Generalised Relation Staff with partial values in the form of hierarchical IFS

 Name JOB_DESCRIPTION SALARY
Natalie {Research Associate/<1.0,0>} {~Salary25K}
Anna {Programmer/<0.7,0.2>} {~Salary20K }

Let l be an element defined by a structured domain Di. U(e) is the set of higher level

concepts, i.e. U(e) = {n|n ∈ Di ∧ n is an ancestor of l}, and L(e) is the set of lower concepts
L(e) = {n|n ∈ Di ∧ n is a descendent of l}. If l is a base concept then L(e) = ∅ and if l is a top
level concept, then U(e)=∅. Considering the H-IFS F={Research Associate/<1.0,0.0>,
Programmer/<0.7,0.2>, Teaching Associate/<0.4,0.1>} as part of the Concept Employee in
Fig.3:

U(Programmer/<0.7,0.2>) = { Technical Staff/<0.7,0.1>}
L(Programmer/<0.7,0.2>) = ∅

Rule-1: If (|U(e)| > 1 ∧ L(e) = ∅), then it is simply declared that a child or base concept has
many parents.

E.g. |U (Programmer/<0.7,0.2>)|=3, L(Programmer/<0.7,0.2>) = ∅, Therefore a child or
base concept acting as a selection predicate can claim any tuple (parent) containing elements
found in U(e), as its ancestor.

Now let us consider the following case where l1=”Employee” and l2=”Programmer” then
let B the function that defines the space between l1∧ l2. In this case |B((l1),(l2))|=2, and >1

 B((l1),(l2))= U(L(l1)∧(l2)) where l1 is a high level concept, l2 is a base concept are elements
defined in a structured domain. If both arguments are high level concepts or low level
concepts then B((l1),(l2))= ∅.

Rule-2: If B((l1),(l2) is defined and | B((l1),(l2))|>1, then it is simply declared that multiple
parents, high level concepts, are receiving a base concept as their own child. Therefore a
parent or high level concept acting as a selection predicate can claim any tuple (child)
containing elements found in (L(l1)∧(l2)), as its descendant, but with variants level of
certainty.

Background knowledge may be specified as arising from a hierarchical Intuitionistic Fuzzy
hierarchy, as integrity constraints, from the integration of conflicting databases, or from
knowledge selected by domain experts. Using such information we offer to re-engineer the
database by replacing missing, conflicting or unacceptable data by sets of the attribute
domain.

Concept hierarchies have previously been used for attribute-induced knowledge discovery
[18]. However the proposed use of background knowledge in this context is unique.

We assume that original attribute values may be given either as singleton sets, or subsets of
the domain, or as concepts, which correspond to subsets of an attribute domain. In the last
case the values may be defined in terms of a concept hierarchy. In addition there are rules
describing the domain, and these may be formed in a number of ways: they may take the form

25

of integrity constraints, where we have certain restrictions on domain values; functional
dependencies and also rules specified by a domain expert.

Employee
<1.0, 0..0>

Technical Staff
<0.7, 0.1>

Programmer
<0.7, 0.2>

Junior Staff
<1.0, 0.0>

Senior Staff
<0.4, 0.3>

Research Associate
<1.0, 0.0>

Teaching Associate
<0.4, 0.1>

Employee
<1.0, 0..0>

Technical Staff
<0.7, 0.1>

Programmer
<0.7, 0.2>

Junior Staff
<1.0, 0.0>

Senior Staff
<0.4, 0.3>

Research Associate
<1.0, 0.0>

Teaching Associate
<0.4, 0.1>

Fig. 3. Generalised H-IFS F –Concept Employee

An example of a concept hierarchy expressed with the aid of H-IFS F={Research
Associate/<1.0,0.0>, Programmer/<0.7,0.2>, Teaching Associate/<0.4,0.1>} with values
which are sets given in the generalised relation staff in Table.1. Here a value for the attribute
JOB_DESCRIPTION may be a may be a concept from the concept hierarchy as defined in
Fig.3 (e.g. {Technical Staff/ <0.7, 0.1>}). Then in terms of functional dependencies we may
receive the following information Technical-Staff ~Salary25K. To this extent in terms of any
declarative query language it can be concluded that the salary in for a reaching associate or a
Programmer must be in the range of Salary25K. We can also use this knowledge to
approximate the salary for all instances of Junior Staff in case where no further background
knowledge after estimating firstly the <µ,ν> degrees for the hierarchical concept Employee.
Such a hierarchical concept like employee in Fig.3 can be defined with the aid of Intuitionistic
fuzzy set over a universe [19, 20] that has a hierarchical structure, named as H-IFS.

4 Definition of IFS and H-IFS

The notion of H-IFS rose from our need to express concepts [19] [20], [21], [22] in the case where
these values are part of taxonomies as for food products or microorganisms for example .

The definition domains of the H-IFS sets that we propose below are subsets of hierarchies
composed of elements partially ordered by the “kind of” relation. An element li is more general than
an element lj (denoted li ~ lj), if li is a predecessor of lj in the partial order induced by the “kind of”
relation of the hierarchy. An example of such a hierarchy is given in Fig. 1. A hierarchical fuzzy set is
then defined as follows.

26

Definition 4.1 A H-IFS is an Intuitionistic fuzzy set whose definition domain is a subset of the
elements of a finite hierarchy partially ordered by the “kind of” ≤ relation.

For example, the fuzzy set M defined as: {Milk<0.8,0.1>, Whole-Milk<0.7,0.1>, Condensed-
Milk<0.4,0.3>} conforms to Definition-3. Their definition domains are subsets of the hierarchy
given in Fig.4.

We can note that no restriction has been imposed concerning the elements that compose the
definition domain of a H-IFS. In particular, the user may associate a given <µ, ν> with an
element li and another degree <µ1, ν1> with an element lj more specific than li . <µ, ν> ~ <µ1, ν1>
represents a semantic of restriction for lj compared to li, whereas <µ1, ν1> ~ <µ, ν> represents a
semantic of reinforcement for lj compared to li. For example, if there is particular interest in
condensed milk because the user studies the properties of low fat products, but also wants to
retrieve complementary information about other kinds of milk, these preferences can be
expressed using, for instance, the following Intuitionistic fuzzy set: <1, 0>/ condensed milk + <0.5,
0.1>/Milk. In this example, the element condensed milk has a greater degree than the more general
element Milk, which corresponds to a semantic of reinforcement for condensed milk compared to
Milk. We can make two observations concerning the use of H-IFSs:

• Let <1, 0>/ condensed milk + <0.5, 0.1>/Milk be an expression of liking in a query. We
can note that this H-IFS implicitly gives information about elements of the hierarchy
other than Condensed milk and Milk. One may also assume that any kind of
condensed milk (i.e. whole condensed milk) interests the user with <µ, ν> <1, 0>.

• Two different H-IFSs on the same hierarchy do not necessarily have the same
definition domain, which means they cannot be compared using the classic
comparison operations of Intuitionistic fuzzy set theory For example, <1, 0>/
condensed milk + <0.5, 0.1>/Milk and 1/Milk + 0.2/ Pasteurised milk are defined on two
different subsets of the hierarchy of “Fig. 1” and, thus, are not comparable.

These observations led to the introduction of the concept of closure of a Intuitionistic
hierarchical fuzzy set, which is defined on the whole hierarchy. Intuitively, in the closure of a
H-IFS, the “kind of, ≤” relation is taken into account by propagating the <µ, ν> associated
with an element to its sub-elements (more specific elements) in the hierarchy. For instance, in
a query, if the user is interested in the element Milk, we consider that all kinds of Milk—
Whole milk, Pasteurised milk, are also of interest. On the opposite, we consider that the
super-elements (more general elements) of Milk in the hierarch are too broad to be relevant
for the user’s query.

Definition 4.2 Let F be a H-IFS defined on a subset D of the elements of a hierarchy L. It
degree is denoted as <µ, ν>. The closure of F, denoted clos(F), is a H-IFS defined on the
whole set of elements of L and its degree <µ, ν>clos(F) is defined as follows.

For each element l of L, let SL= {l1, ….,ln} be the set of the smallest super-elements of in D
:

• If SL is not empty, <µ, ν>clos(F) (SL) = <max1≤ i≤n(µ(Li)), min1≤ i≤n(ν(Li)>
else, <µ, ν>clos(F) (SL) = <0, 0>

In other words, the closure of a H-IFS F is built according to the following rules. For each
element l1 of L:

• If lI belongs to F, then lI keeps the same degree in the closure of F (case where SL= { lI
}).

• If lI has a unique smallest super-element l1 in F, then the degree associated with lI is
propagated to L in the closure of F, SL= { l1 } with l1 > lI)

27

• if L has several smallest super-elements {l1, ….,ln} in F, with different degrees, a
choice has to be made concerning the degree that will be associated with lI in the
closure. The proposition put forward in Definition 4.2 consists of choosing the
maximum degree of validity µ and minimum degree of non validity v associated with
{l1, …,ln}.

• All the other elements of L, i.e., those that are more general than, or not comparable
with the elements of F, are considered as non-relevant. The degree <0,0> is associated
with them.

If the H-IFS expresses preferences in a query, the choice of the maximum allows us not to
exclude any possible answers. In real cases, the lack of answers to a query generally makes
this choice preferable, because it consists of enlarging the query rather than restricting it.

If the H-IFS represents an ill formulated concept, the choice of the maximum allows us to
preserve all the possible values of the datum, but it also makes the datum less specific. This
solution is chosen in order to homogenize the treatment of queries and data. In a way, it
enlarges the query, answer.

5 Replacing & Constraining Unknown Attribute Values

 All descendents of an instance of a high-level concept are replaced with a minimal H-IFS
has these descendents as members.

Defining the Minimal H-IFS
Step 1: Assign Min-H-IFS ← ∅. Establish an order so that the sub-elements {l1,…,ln} of

the hierarchy L, are examined after its super-elements
Step 2: Let l1 be the first element and (l1)/<µ, ν> ≠ (l1)/<0, 0> then add l1 to Min-H-IFS and

<µ, ν>clos(Min-HIFS) (l1)= (l1)/<µ, ν>
Step 3: Let us assume that K elements of the hierarchy L satisfy the condition <µ,

ν>clos(Min-HIFS) (li)=(li)/<µ, ν>. In this case the Min-H-IFS do not change. Go to next element lk+1
and execute Step 4

Step 4: The lk+1/<µ k+1, ν k+1> associated with lk+1. In this case lk+1 is added to Min-H-IFS
with the corresponding <µ k+1, ν k+1>.

Step 5: Repeat steps three and four until clos(Min-HIFS)=C
For instance the H-IFS’s S1 and S2 are minimal (none of their elements is derivable). They

cannot be reduced further.
S1= Milk/<1,0>
S2= {Milk/<1,0>, Whole-Milk/<0.7,0.1>, Whole-Pasteurised-milk/<1,0>, Condensed-

Milk/<0.4, 0.3>}
In the next section, a complementary solution is proposed when it comes to lack of answers

to a query, i.e. when the user wants to retrieve complementary answers close to his initial
query. The H-IFS set that represents the user’s preferences is replaced by a more general one

A null value is regarded as a partial value with all base domain values as members. We
refer to the resultant partial value, obtained as a result of this process, as a primal partial
value. The replacement process is thus performed by the following procedure:

28

Procedure: Replacement

Input: A concept table R consisting of partial values, or nulls.

Output: A re-engineered partial value table U.

Method: For each attribute value of R recursively replace the cell
value by a primal partial value. For each cell of R replace, the
primal partial value by a pruned prime-partial –value, until a
minimal partial value is reached.

If a particular member of a partial value violates the domain constraint (rule) then it is

pruned from the minimal H-IFS primal partial value. This process is continued until all
partial values have been pruned by the constraints as much as possible. We refer to the
resultant partial value, obtained as a result of this process, as a minimal partial value.

In addition in an integrated DBMS environment it will be also useful not to query all
sources, but only those that contain information relevant to our request. This is quite critical
for achieving better query performance. For this reason we equip our Integrated architecture
with a repository that contains various constraints (i.e. Intuitionistic Fuzzy Range Constraints,
Intuitionistic Fuzzy Functional Dependencies, etc) that are related to the information sources
that participate in the Integrated Architecture.

Range constraints: such as “The average income per person is estimated to be in the range
of €50K”. Considering a finite universe of discourse, say X whose cardinality is N. Let us
suppose that X={X1, X2, .… , Xn} and the Intuitionistic fuzzy number ~a given by ~a ={(xi,
µi, νi): xi∈X, I = 1,2….N} We can express the above constraint as follows ~Income50K {(49,
.8, .1), (50, .9, .02) (51, .7, .15)}

Classical data integrity constraints such as “All persons stored at a source have a unique
identifier”.

Functional Dependencies: for instance, a source relation S1(Name, lives, income,
Occupation) has a functional dependency Name→(Lives, ~Income).These constraints are
very useful to compute answers to queries.

There are several reasons we want to consider constraints separately from the query
language. Describing constraints separately from the query language can allow us to do
reasoning about the usefulness of a data source with respect to a valid user request.

Some of source constraints can be naturally represented as local constraints. Each local
constraint is defined on one data source only. These constraints carry a rich set of semantics,
which can be utilized in query processing. Any projected database instance of source, these
conditions must be satisfied by the tuples in the database.

Definition 5.1 Let si,...,sl be l sources in a data-integrated system. Let P = {pi,..., pn } be a
set of global predicates, on which the contents of each source s are defined. A general global
constraint is a condition that should be satisfied by any database instance of the global
predicates P.

General global constraints can be introduced during the design phase of such a data-
integration system. That is, even if new sources join or existing ones leave the system, it is
assumed that these constraints should be satisfied by any database instance of the global
predicates. Given the global predicate Income, if a query asks for citizens with an average

29

income above ~Income60K, without checking the source contents and constraints, the
integrated system can immediately know that the answer is empty.

 To this extent we can interrogate the constraints repository to find out if a particular source
contains relevant information with respect to particular request. We now consider the problem
of aggregation for the partial value data model. In what follows we are concerned with
symbolic attributes, which are typically described by counts and summarised by aggregated
tables. The objective is to provide an aggregation operator which allows us to aggregate
individual tuples to form summary tables.

6 Summary Tables and Aggregation

 A summary table R, is represented in the form of an Intuitionistic fuzzy relation (IFR).
Aggregation (A): An aggregation operator A is a function A(G) where G = {<x, µF(x) ,

νF(x)>| x∈ X } where x=<att1, …,attn> is an ordered tuple belonging to a given universe X,
{att1, …, attn} is the set of attributes of the elements of X, µF(x) and νF(x) are the degree of
membership and non-membership of x. The result is a bag of the type {<x′, µF(x′) , νF(x′)>|
x′∈ X }. To this extent, the bag is a group of elements that can be duplicated and each one has
a degree of µ and ν.
Input: Ri = (l, F, H) and the function A(G)
Output: Ro = (lo, Fo, Ho) where

• l is a set of levels l1,…, ln, that belong to a partial order ≤ O
To identify the level l as part of a hierarchy we use dl.

 l┴: base level l┬: top level
 for each pair of levels li and lj we have the relation
 µij : li × lj [0,1] νij : li × lj [0,1] 0 < µij + νij < 1
• F is a set of fact instances with schema F = {<x, µF(x) , νF(x)>| x∈ X }, where

x=<att1, …,attn> is an ordered tuple belonging to a given universe X, µF(x) and νF(x)
are the degree of membership and non-membership of x in the fact table F
respectively.

• H is an object type history that corresponds to a structure(l, F, H′) which allows us
to trace back the evolution of a structure after performing a set of operators i.e.
aggregation

The definition of the extended group operators allows us to define the extended group
operators Roll up (∆), and Roll Down (Ω).

Roll up (∆): The result of applying Roll up over dimension di at level dlr using the

aggregation operator A over a relation Ri=(li ,Fi , Hi) is another relation Ro=(lo, Fo, Ho)
Input: Ri = (li ,Fi , Hi)
Output: Ro = (lo ,Fo , Ho)

An object of type history is a recursive structure H =

ω is the initial state of the
relation.

(l, A, H’) is the state of the
relation after performing an
operation on it.

30

The structured history of the relation allows us to keep all the information when applying

Roll up and get it all back when Roll Down is performed. To be able to apply the operation of
Roll Up we need to make use of the IFSUM aggregation operator.

Roll Down (Ω): This operator performs the opposite function of the Roll Up operator. It is

used to roll down from the higher levels of the hierarchy with a greater degree of
generalization, to the leaves with the greater degree of precision. The result of applying Roll
Down over a relation Ri = (l, F, H) having H=(l’, A’, H’) is another relation Ro= (l’, F’, H’).
Input: Ri=(l, F, H)
Output: Ro=(l’, F’, H’) where F’ set of fact instances defined by operator A.

To this extent, the Roll Down operative makes use of the recursive history structure
previously created after performing the Roll Up operator.

6.1 Summarisation Paths

The structure of any H-IFS can be described by a domain concept relation DCR =
(Concept, Element), where each tuple describes a relation between elements of the domain on
different levels.

The DCR can be used in calculating recursively the different summarisation or selection
paths as follows:

If n≤2, then DCR becomes the Path table as it describes all summarisation and selection

paths. These are entries to a knowledge table that holds the metadata on parent-child
relationships. An example is presented below:

DCR

Concept Element
Milk <1.0, 0.0> Pasteurised Milk <1.0, 0.0>
Milk <1.0, 0.0> Whole Milk <0.7, 0.1>
Milk <1.0, 0.0> Condensed Milk <0.4, 0.3>
Pasteurised Milk <1.0, 0.0> Whole Pasteurised Milk

<1.0, 0.0>
Whole Milk <0.7, 0.1> Whole Pasteurised Milk

<1.0, 0.0>
Whole Milk <0.7, 0.1> Whole Condensed Milk

<0.7, 0.1>
Condensed Milk <0.4, 0.3> Whole Condensed Milk

<0.7, 0.1>

Fig. 4. Domain Concept Relation

PATH DCR {x=1...(n-2) | n>2} DCRx

31

Fig. 5 shows how our Milk hierarchy knowledge table is kept. Paths are created by running
a recursive query that reflects the ‘PATH’ algebraic statement. The hierarchical IFS used as
example throughout this paper comprises of 3 levels, thus calling for the SQL-like query as
below:

SELECT A.Concept as Grand-concept, b.concept, b.element
FROM DCR as A, DCR as B
WHERE A.child=B.parent;

This query will produce the following paths:

Path
Grand-concept Concept Element Path Colour

Milk
<1.0, 0.0>

Pasteurised
Milk

<1.0, 0.0>

Whole Pasteurised Milk
<1.0, 0.0>

Red

Milk
<1.0, 0.0>

Whole Milk
<0.7, 0.1>

Whole Pasteurised Milk
<1.0, 0.0>

Blue

Milk
<1.0, 0.0>

Whole Milk
<0.7, 0.1>

Whole Condensed Milk
<0.7, 0.1>

Green

Milk
<1.0, 0.0>

Condensed
Milk

<1.0, 0.0>

Whole Condensed Milk
<0.7, 0.1>

Brown

Fig. 5. Path Table

Fig.7 presents a pictorial view of the four distinct summarisation and selection paths.

Milk
<1.0, 0..0>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<1.0, 0.0>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<1.0, 0.0>

Milk
<1.0, 0..0>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<1.0, 0.0>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<1.0, 0.0>

Fig. 6. Pictorial representation of paths

32

These paths will be used in fuzzy queries to extract answers that could be either definite or
possible. This will be realised with the aid of the predicate (θ).

A predicate (θ) involves a set of atomic predicates (θ1, …, θn) associated with the aid of
logical operators p (i.e. ∧, ∨, etc.). Consider a predicate θ that takes the value “Whole Milk”,
θ = “Whole Milk”.

After utilizing the IFS hierarchy presented in Fig.7, this predicate can be reconstructed as
follows:

θ = θ1 ∨ θ2 ∨... ∨ θn
In our example, θ1=”Whole Milk”, θ2=”Whole Pasteurised Milk” and θn=”Condensed

Whole Milk”.
The reconstructed predicate θ = (Whole Milk ∨ Whole Pasteurised Milk ∨ Condensed

Whole Milk) allows the query mechanism to not only definite answers, but also possible
answers.
In terms a query retrieving data from a summary table, the output contains not only records
that match the initial condition, but also those that satisfy the reconstructed predicate.
Consider the case where no records satisfy the initial condition (Whole Milk). Traditional
aggregation query would have returned no answer, however, based on our approach, the
extended query would even in this case, return an answer, though only a possible one, with a
specific belief and disbelief <µ, ν> . It will point to those records that satisfy the reconstructed
predicateθ, more specifically, “Whole Pasteurised Milk and Condensed Whole Milk”.

7 Conclusions

We provide a means of using background knowledge to re-engineer the data representation
into a partial value representation with the aid of H-IFS and Intuitionistic Fuzzy relational
representation.

The hierarchical links are defined by the “kind of, ≤” relation. The membership of an
element in a H-IFS has consequences on the membership and non-membership of its sub
elements in this set. The notion of H-IFS, that may be defined on a part of a hierarchy and the
notion of closure of a H-IFS, that is explicitly defined on the whole hierarchy, using the links
between the elements that compose the hierarchy.

H-IFSs that have the same closure define equivalence classes, called minimal H-IFS.
Minimal fuzzy sets are used as a basis to define the generalization of a H-IFS fuzzy set. The
proposed methodology aims at enlarging the user preferences expressed when defining a
query, in order to obtain related and complementary answers.
We have discussed how domain knowledge presented in the form of background knowledge,
such as integrity constraints, functional dependencies or details of the concept hierarchy, may
be used to reduce the amount of missing data in the database..

We have presented a new multidimensional model that is able to operate over data with
imprecision in the facts and the summarisation hierarchies. Classical models imposed a rigid
structure that made the models present difficulties when merging information from different
but still reconcilable sources.

This is likely to be a useful tool for decision support and knowledge discovery in, for
example, data mediators, data warehouses, where the data are often subject to such
imperfections. Furthermore we notice that our approach can be used for the representation of
Intuitionistic fuzzy linguistic terms

33

References

[1] Bell, D., Guan, J., Lee, S.: Generalized union and project operations for pooling
uncertain and imprecise information. DKE 18 (1996) 89-117

[2] Chen, A., Tseng, F.: Evaluating aggregate operations over imprecise data. IEEE Trans.
on Knowledge and Data Engineering, 8 (1996) 273-284

[3] Zemankova, M., Kandel, A.: Implementing imprecision in Information systems. Inf.
Sci. Vol. 37. (1985) 107–141

[4] Dubois, D., Prade, H., Testamale, C.: Handling Incomplete or Uncertain Data and
Vague Queries in Database Applications. Plenum Press (1988)

[5] Prade, H.: Annotated bibliography on fuzzy information processing. Readings on
Fuzzy Sets in Intelligent Systems. Morgan Kaufmann Publishers Inc. (1993)

[6] Codd, E.: Extending the Data Base Relational Model to Capture More Meaning. ACM
Trans. Database Systems, Vol.4, No.4, 397-434, 1979

[7] Goldstein, B.: Constraints on Null Values in Relational Databases. Proc. 7th Int. Conf.
on VLDB, IEEE Press (1981) 101-110

[8] Biskup, J.: A Foundation of Codd's Relational Maybe-Operations. XP2 Workshop on
Relational Database Theory. (1981)

[9] Liu, C., Sunderraman, R.: Indefinite and maybe information in relational databases.
ACM Trans. Database Syst, Vol.15, No.1 (1990) 1–39.

[10] Liu, K., Sunderraman, R.: On Representing Indefinite and Maybe Information in
Relational Databases: A Generalization. ICDE. IEEE Computer Society (1990) 495-502

[11] Ola, A.: Relational databases with exclusive disjunctions. Data Engineering (1992)
328–336

[12] Homenda, W.: Databases with Alternative Information. IEEE Trans. on Knowledge and
Data Engineering, Vol. 3, No. 3. (1991) 384-386.

[13] Gessert, G.: Handling Missing Data by Using Stored Truth Values. SIGMOD Record,
Vol. 20, No. 1 (1991) 30-42

[14] Zicari, R.: Closed World Databases Opened Through Null Values. Proc. 14th Int. Conf.
on VLDB. (1988) 50-61

[15] Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. Vol.28 (1984)
142–166.

[16] Lipski, J.: On semantic issues connected with incomplete information databases. ACM
Trans. Database Syst, Vol.4, No.3 (1979) 262–296

[17] Dhar, V., Tuzhilin, A.: Abstract-driven pattern discovery in databases. IEEE Trans. on
Knowledge and Data Engineering 6 (1993) 926-938

[18] Han, J., Fu, Y.: Attribute-oriented induction in data mining. Advances in Knowledge
Discovery. AAAI Press/MIT Press, Cambridge, MA (1996) 399-421

[19] Rogova E., Chountas P., Atanassov, K.: Flexible Hierarchies and Fuzzy Knowledge-
based OLAP. FSKD 2007,

[20] Rogova E., Chountas P.: On imprecision intuitionistic fuzzy sets & OPLAP – The case
for KNOLAP. IFSA 2007

[21] Atanassov, K.: Intuitionistic Fuzzy Sets. Springer-Verlag. Heidelberg. (1999)
[22] Atanassov, K.: Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems. (1986) 20, 87–96

