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Abstract. Here, we present a way to replace unknown values using background 
knowledge of data that is often available arising from a concept hierarchy, as 
integrity constraints, from database integration, or from knowledge possessed by 
domain experts. We present and examine the case of H-IFS to represent support 
contained in subsets of the domain as a candidate for replacing unknown values 
mostly referred in the literature as NULL values. 
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1   Introduction 

Background knowledge of data is often available, arising from a concept hierarchy, as 
integrity constraints, from database integration, or from knowledge possessed by domain 
experts. Frequently integrated DBMSs contain incomplete data which we may represent by 
using H-IFS to declare support contained in subsets of the domain. These subsets may be 
represented in the database as partial values, which are derived from background knowledge 
using conceptual modelling to re-engineer the integrated DBMS. For example, we may know 
that the value of the attribute JOB-DESCRIPTION is unknown for the tuple relating to 
employee Natalie but also know from the attribute salary that Natalie receives an estimated 
salary in the range of €25K ~Salary25K. A logic program, using a declarative language can 
then derive the result that Natalie is a “Junior-Staff”, which we input to the attribute JOB-
DESCRIPTION of tuple Natalie in the re-engineered database. In such a manner we may use 
the knowledge base to replace much of the unknown in the integrated database environment. 

Generalised relations have been proposed to provide ways of storing and retrieving data. 
Data may be imprecise, hence we are not certain about the specific value of an attribute but 
only that it takes a value which is a member of a set of possible values. An extended relational 
model for assigning data to sets has been proposed by [1].  This approach may be used either 
to answer queries for decision making or for the extraction of patterns and knowledge 
discovery from relational databases. It is therefore important that appropriate functionality is 
provided for database systems to handle such information. 

A model, which is based on partial values [2], has been proposed to handle imprecise data. 
Partial values may be thought of as a generalisation of null values where, rather than not 
knowing anything about a particular attribute value, we may identify the attribute as a set of 
possible values. A partial value is therefore a set such that exactly one of the values in the set 
is the true value.  
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We review the different types of NULL values and then we focus is on providing an 
integrated DBMS environment that will enable us to: 

• reconcile unknown information with the aid of background knowledge. We examine 
the appropriateness of the H-IFS as a form of Background knowledge for replacing 
unknown attribute values  

•  utilise constraints as part of the integrated DBMS metadata to improve query 
execution  

• query imprecise information a part of integrated DBMS environment that may entail 
more than one sources of information  

2   Review of NULL Values 

A null value represents an unknown attribute value, is a value that is known to exist, but the 
actual value is unknown. The unknown value is assumed to be a valid attribute value, that is, 
some value in the domain of that attribute. This is a very common kind of ignorant 
information. For example, in an employee database, while everyone must have a surname, 
Alex’s surname may be recorded as unknown. The unknown value indicates that Alex has a 
name, but we do not know her name. An unknown value has various names in the literature 
including unknown null [3], missing null [4], and existential null [5]. 

The meaning of a fact, F, with an unknown attribute value over an attribute domain of 
cardinality N is a multiset with N members; each member is a set containing an F instance 
with the unknown value being replaced by a different value from the attribute domain. For 
example, assume f = {IBM (⊥)} where (⊥ represents an unknown value over a domain {20, 
22} with respect to IBM’s share-price), then the meaning of f is 

f = {{IBM (20)}, {IBM (22)}} 
This corresponds to the notion that a fact with an unknown value is incomplete with respect 

to a fact where that unknown value is no longer unknown, but is now known to be a specific 
value (i.e. f1 = {{IBM (20)}). 

Another generalization of an unknown fact is a disjunctive fact [6], so known as indefinite 
information [7]. A disjunction is a logical or applied to fact instances. Let F be an inclusive 
disjunctive fact with N disjuncts. The meaning of F is given by a multiset with N members; 
each member is a set containing one disjunct. For example, the share price of IBM may be 
£20 or £22. (i.e.” IBM (20), IBM (22)”). The disjunction is exclusive [8] or inclusive [9]. If it 
is an exclusive disjunction, one and only one disjunct is true. The meaning of an exclusive 
disjunctive fact is the same as that of an imprecise value. Let f = {{IBM (20)}, {IBM (22)}} 
be an exclusive disjunctive then the meaning of f is f = {IBM (20)}∨ {IBM (22)}.  

The meaning of an inclusive disjunctive fact is somewhat different than that of its exclusive 
complement, at least one alternative may be true. Let F be an inclusive disjunctive fact with N 
disjuncts. The meaning of F is given by a multiset with 2N-1 members; each member is a 
unique subset of disjuncts. For example, assume, the inclusive disjunct f = {IBM (20) {IBM 
(22)} then the meaning of f, is f = {{IBM (20)}, {IBM (22)}, {IBM (20), IBM (22)}}, 
excluding the fact, {{IBM (⊥)}. The empty (⊥) attribute represents the situation where a fact 
instance exists, but does not have a particular attribute-label value. 

A maybe value is an attribute-label value which might or might not exist [10]. If it does 
exist, the value is known. A maybe tuple or fact-instance is similar to a maybe value, but the 
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entire tuple might not be part of the relation. Maybe tuples are produced when one disjunct of 
an inclusive disjunctive fact-instance is found to be true. 

A combination of inclusive disjunctive fact instance and a maybe fact instance can 
determine the semantics of open information or nulls [11].  The denotation of an open null is 
exact to inclusive disjunctive information with the addition of the empty set as a possible 
value. That is the attribute-lable value may not exist, could be exactly one value, or could be 
many values. For example, in the shares database an open value could be used to present IBM 
share prices. This value means that IBM share price possibly had a past record, (this could be 
the first appearance in the market); IBM share price may be one or many. The open value 
covers all this possibilities. A generalization of open information is possible information [12] 
(this differs from our use of the term “possible”). Possible information is an attribute value 
whose existence is undetermined, but if it does exist, it could be multiple values from a subset 
of the attribute domain. 

A no information value is a combination of an open value and an unknown value [13]. The 
no information value restricts an open value to resemble an unknown value. A, no information 
value might not exist, but if it does, then it is a single value, which is unknown, rather than 
possibly many values. The meaning of a no information value is similar to that of an unknown 
value with the inclusion of the addition of the empty set as a possible value. 

Unknown, partially known, open, no information, and maybe null values are different 
interpretations of a null value. There are other null value interpretations, but none of these is a 
kind of well cognisant information. 

An inapplicable or does not exist null is a very common null value. An inapplicable null, 
appearing as an attribute value, means that an attribute does not have a value [14]. An 
inapplicable value neither contains nor represents any ignorance; it is known that the attribute 
value does not exist. Inapplicable values indicate that the schema (usually for reasons of 
efficiency or clarity) does not adequately model the data. The relation containing the 
inapplicable value can always be decomposed into an equivalent set of relations that do not 
contain it. Hence the presence of inapplicable values indicates inadequacies in the schema, but 
does not imply that information is being incompletely encoded.  

Open nulls is the main representative of the possible-unweighted–unrestricted branch. 
Universal nulls may also be classified under this branch assuming the OWA semantics. 
Inclusive disjunctive information, possible information and maybe tuples or values  are 
indicative representatives of the possible-unweighted-restricted school. 

In [15] five different types of nulls are suggested. The labels and semantics of them are 
defined as follows. Let V be a function, which takes a label and returns a set of possible 
values that the label may have. 

    
Label (X) V(X) 

Ex-mar D 
Ma-mar D ∪ {⊥} 
Pl-mar {⊥} 
Par-mar  (Vs) Vs 
Pm-mar  (Vs) Vs ∪ {⊥} 

Fig. 1. Types of NULL and their semantics 

Intuitively, V (Ex-mar) = D says that the actual value of an existential marker can be any 
member of the domain D. Likewise, V (Ma-mar) = D ∪ {⊥} says that the actual value of a 
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maybe marker can be either any member of D, or the symbol ⊥, denoting a non-existent 
value. Similarly, V (Par-mar (V s)) = Vs says that the actual value of a partial null marker of 
the form pa mar (Vs) lies in the set Vs, a subset of the domain D. 

An important issue is the use of ⊥, which denotes that an attribute is inapplicable. However 
such an interpretation of the unknown information, is not consistent with the principles of 
conceptual modelling. Assuming the sample fact spouse, the individual, Tony, is a bachelor 
and hence, the wife field is inapplicable to him, ⊥. Conceptually the issue can be resolved 
with the use of the subtypes (e.g. married, unmarried) as part of the entity class Person. A 
subtype is introduced only when there is at least one role recorded for that subtype. The 
conceptual treatment of null will permit us to reduce the table in Fig.1 using only two types of 
null markers. 

 
Label (X) V(X) 

V-mar (V) {V} 
P-mar  (Vs) {Vs} 
Π-mar  (D-Vs) {D –Vs} 

Fig. 2.  The reduced set of NULL values 

In the general case the algebraic issue under the use of subtypes is whether the population 
of the subtypes in relationship to the super type is:  
• Total and Disjoint: Populations are mutually exclusive and collectively exhaustive. 
• Non-Total and Disjoint: Populations are mutually exclusive but not exhaustive. 
• Total and Overlapping: Common members between subtypes and collectively exhaustive, 

in relationship to super type. 
• Non-Total and Overlapping: Common members between subtypes and not collectively 

exhaustive, in relationship to super type. 
Conclusively it can be said that a null value is often semantically overloaded to mean either 

an unknown value or an inapplicable. For an extensive coverage of the  issues related to the 
semantic overloading of null values somebody may further refer to [16]. 

3   NULL Values & Background Knowledge in DBMS 

In a generalised relational database we consider an attribute A and a tuple ti of a relation R in 
which n attribute value ti[A] may be a partial value. A partial value is formally defined as 
follows. 

Definition 3.1 A partial value is determined by a set of possible attribute values of tuple t 
of attribute A of which one and only one is the true value. We denote a partial value by P = 
[a1,...,an] corresponding to a set of P possible values {a1,... , an} of the same domain, in which 
exactly one of these values is the true value of . Here, P is the cardinality of {a1,... , an} is a 
subset of the domain set {a0,... , an+1} of attribute A of relation R, and P ≤ n+1. 

Queries may require operations to be performed on partial values; this can result in a query 
being answered by means of bags, where the tuples have partial attribute values [17]. 

Example 3.1 We consider the attribute JOB_DESCRIPTION that has possible values 
'Research Associate', 'Teaching Associate', ‘Programmer’,  'Junior Staff', and 'Senior Staff'. 
Then {'Junior Staff', 'Senior Staff'}, is an example of a partial value in terms of classical logic. 
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In this case we know only that the individual is a staff but not whether he or she is a junior 
staff or a senior staff. 

Definition 3.2  An Intuitionistic Fuzzy partial value relation R, is a relation based on partial 
values for domains D1, D2,..., Dn of attributes A1, A2,..., An where R ⊆ P1 x P2 x x Pn and Pi is 
the set of all the partial values on  power set of domain Di. A pruned value of attribute Ai of 
the relation R corresponds then to a H-IFS which is a subset of the domain Di. An example of 
a partial value relation is presented in Table 1 below: 

Table 1. Generalised Relation Staff with partial values in the form of hierarchical IFS 

     Name             JOB_DESCRIPTION               SALARY 
Natalie {Research Associate/<1.0,0>} {~Salary25K} 
Anna {Programmer/<0.7,0.2>} {~Salary20K } 

 
Let l be an element defined by a structured domain Di.  U(e) is the set of  higher level 

concepts, i.e. U(e) = {n|n ∈ Di ∧ n is an ancestor of l}, and L(e) is the set of lower concepts 
L(e) = {n|n ∈ Di ∧ n is a descendent of l}. If l is a base concept then L(e) = ∅ and if l is a top 
level concept, then U(e)=∅. Considering the H-IFS F={Research Associate/<1.0,0.0>, 
Programmer/<0.7,0.2>, Teaching Associate/<0.4,0.1>} as part of the Concept Employee in 
Fig.3:  

U(Programmer/<0.7,0.2>) = { Technical Staff/<0.7,0.1>}  
L(Programmer/<0.7,0.2>) = ∅ 

Rule-1: If (|U(e)| > 1 ∧ L(e) = ∅), then it is simply declared that a child or base concept has 
many parents.  

E.g. |U (Programmer/<0.7,0.2>)|=3,  L(Programmer/<0.7,0.2>) = ∅, Therefore a child or 
base concept acting as a selection predicate can claim any tuple (parent) containing elements 
found in U(e), as its ancestor.  

Now let us consider the following case   where l1=”Employee” and l2=”Programmer” then 
let B the function that defines the space between l1∧ l2. In this case |B((l1),( l2))|=2, and  >1 

 B((l1),( l2))= U(L(l1)∧( l2)) where l1 is a high level concept, l2 is a base concept are elements 
defined in a  structured domain. If both arguments are high level concepts or low level 
concepts then B((l1),( l2))= ∅.  

Rule-2: If B((l1),( l2) is defined and | B((l1),( l2))|>1, then it is simply declared that multiple 
parents, high level concepts, are receiving a base concept as their own child. Therefore a 
parent or high level concept acting as a selection predicate can claim any tuple (child) 
containing elements found in (L(l1)∧( l2)), as its descendant, but with variants level of 
certainty.  

Background knowledge may be specified as arising from a hierarchical Intuitionistic Fuzzy 
hierarchy, as integrity constraints, from the integration of conflicting databases, or from 
knowledge selected by domain experts. Using such information we offer to re-engineer the 
database by replacing missing, conflicting or unacceptable data by sets of the attribute 
domain.  

Concept hierarchies have previously been used for attribute-induced knowledge discovery 
[18]. However the proposed use of background knowledge in this context is unique. 

We assume that original attribute values may be given either as singleton sets, or subsets of 
the domain, or as concepts, which correspond to subsets of an attribute domain. In the last 
case the values may be defined in terms of a concept hierarchy. In addition there are rules 
describing the domain, and these may be formed in a number of ways: they may take the form 
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of integrity constraints, where we have certain restrictions on domain values; functional 
dependencies and also rules specified by a domain expert. 

 
 

Employee
<1.0, 0..0>

Technical Staff
<0.7, 0.1>

Programmer
<0.7, 0.2>

Junior Staff
<1.0, 0.0>

Senior Staff
<0.4, 0.3>

Research Associate
<1.0, 0.0>

Teaching Associate
<0.4, 0.1>

Employee
<1.0, 0..0>

Technical Staff
<0.7, 0.1>

Programmer
<0.7, 0.2>

Junior Staff
<1.0, 0.0>

Senior Staff
<0.4, 0.3>

Research Associate
<1.0, 0.0>

Teaching Associate
<0.4, 0.1>  

 
Fig. 3. Generalised H-IFS F –Concept Employee 

 
An example of a concept hierarchy expressed with the aid of H-IFS F={Research 
Associate/<1.0,0.0>, Programmer/<0.7,0.2>, Teaching Associate/<0.4,0.1>} with values 
which are sets given in the generalised relation staff in Table.1. Here a value for the attribute 
JOB_DESCRIPTION may be a may be a concept from the concept hierarchy as defined in 
Fig.3 (e.g. {Technical Staff/ <0.7, 0.1>}). Then in terms of functional dependencies we may 
receive the following information Technical-Staff ~Salary25K. To this extent in terms of any 
declarative query language it can be concluded that the salary in for a reaching associate or a 
Programmer must be in the range of Salary25K. We can also use this knowledge to 
approximate the salary for all instances of Junior Staff in case where no further background 
knowledge after estimating firstly the <µ,ν> degrees for the hierarchical concept Employee. 
Such a hierarchical concept like employee in Fig.3 can be defined with the aid of Intuitionistic 
fuzzy set over a universe [19, 20] that has a hierarchical structure, named as H-IFS. 

4   Definition of IFS and H-IFS 

The notion of H-IFS rose from our need to express concepts [19] [20], [21], [22] in the case where 
these values are part of taxonomies as for food products or microorganisms for example . 

The definition domains of the H-IFS sets that we propose below are subsets of hierarchies 
composed of elements partially ordered by the “kind of” relation. An element li is more general than 
an element lj (denoted li ~ lj), if li is a predecessor of lj in the partial order induced by the “kind of” 
relation of the hierarchy. An example of such a hierarchy is given in Fig. 1. A hierarchical fuzzy set is 
then defined as follows. 
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Definition 4.1 A H-IFS is an Intuitionistic fuzzy set whose definition domain is a subset of the 
elements of a finite hierarchy partially ordered by the “kind of” ≤ relation.  

For example, the fuzzy set M defined as: {Milk<0.8,0.1>, Whole-Milk<0.7,0.1>, Condensed-
Milk<0.4,0.3>} conforms to Definition-3. Their definition domains are subsets of the hierarchy 
given in Fig.4. 

We can note that no restriction has been imposed concerning the elements that compose the 
definition domain of a H-IFS. In particular, the user may associate a given <µ, ν> with an 
element li and another degree <µ1, ν1> with an element lj more specific than li . <µ, ν> ~ <µ1, ν1> 
represents a semantic of restriction for lj compared to li, whereas <µ1, ν1> ~ <µ, ν>  represents a 
semantic of reinforcement for lj compared to li. For example, if there is particular interest in 
condensed milk because the user studies the properties of low fat products, but also wants to 
retrieve complementary information about other kinds of milk, these preferences can be 
expressed using, for instance, the following Intuitionistic fuzzy set: <1, 0>/ condensed milk + <0.5, 
0.1>/Milk. In this example, the element condensed milk has a greater degree than the more general 
element Milk, which corresponds to a semantic of reinforcement for condensed milk compared to 
Milk. We can make two observations concerning the use of H-IFSs: 

• Let <1, 0>/ condensed milk + <0.5, 0.1>/Milk be an expression of liking in a query. We 
can note that this H-IFS implicitly gives information about elements of the hierarchy 
other than Condensed milk and Milk. One may also assume that any kind of 
condensed milk (i.e. whole condensed milk) interests the user with <µ, ν>  <1, 0>. 

• Two different H-IFSs on the same hierarchy do not necessarily have the same 
definition domain, which means they cannot be compared using the classic 
comparison operations of Intuitionistic fuzzy set theory For example, <1, 0>/ 
condensed milk + <0.5, 0.1>/Milk and 1/Milk + 0.2/ Pasteurised milk are defined on two 
different subsets of the hierarchy of “Fig. 1” and, thus, are not comparable. 

These observations led to the introduction of the concept of closure of a Intuitionistic 
hierarchical fuzzy set, which is defined on the whole hierarchy. Intuitively, in the closure of a 
H-IFS, the “kind of, ≤” relation is taken into account by propagating the <µ, ν> associated 
with an element to its sub-elements (more specific elements) in the hierarchy. For instance, in 
a query, if the user is interested in the element Milk, we consider that all kinds of Milk— 
Whole milk, Pasteurised milk, are also of interest. On the opposite, we consider that the 
super-elements (more general elements) of Milk in the hierarch are too broad to be relevant 
for the user’s query. 

Definition 4.2 Let F be a H-IFS defined on a subset D of the elements of a hierarchy L. It 
degree is denoted as <µ, ν>. The closure of F, denoted clos(F), is a H-IFS defined on the 
whole set of elements of L and its  degree  <µ, ν>clos(F) is defined as follows. 

For each element l of L, let SL= {l1, ….,ln} be the set of the smallest super-elements of  in D 
: 

• If SL is not empty,  <µ, ν>clos(F) (SL) = <max1≤ i≤n(µ(Li)), min1≤ i≤n(ν(Li)>     
else, <µ, ν>clos(F) (SL) = <0, 0> 

In other words, the closure of a H-IFS F is built according to the following rules. For each 
element l1 of L: 

• If lI belongs to F, then lI keeps the same degree in the closure of F (case where SL= { lI 
}). 

• If lI  has a unique smallest super-element l1 in F, then the degree associated with lI is 
propagated to L in the closure of F, SL= { l1 } with l1 > lI) 
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• if L has several smallest super-elements {l1, ….,ln} in F, with different degrees, a 
choice has to be made concerning the degree that will be associated with lI in the 
closure. The proposition put forward in Definition 4.2 consists of choosing the 
maximum degree of validity µ and minimum degree of non validity v associated with 
{l1, …,ln}.  

• All the other elements of L, i.e., those that are more general than, or not comparable 
with the elements of F, are considered as non-relevant. The degree <0,0> is associated 
with them. 

If the H-IFS expresses preferences in a query, the choice of the maximum allows us not to 
exclude any possible answers. In real cases, the lack of answers to a query generally makes 
this choice preferable, because it consists of enlarging the query rather than restricting it. 

If the H-IFS represents an ill formulated concept, the choice of the maximum allows us to 
preserve all the possible values of the datum, but it also makes the datum less specific. This 
solution is chosen in order to homogenize the treatment of queries and data. In a way, it 
enlarges the query, answer.  

5   Replacing & Constraining Unknown Attribute Values 

 All descendents of an instance of a high-level concept are replaced with a minimal H-IFS 
has these descendents as members.  

Defining the Minimal H-IFS 
Step 1: Assign Min-H-IFS ← ∅.  Establish an order so that the sub-elements {l1,…,ln} of 

the hierarchy L, are examined after its super-elements  
Step 2: Let l1 be the first element and (l1)/<µ, ν> ≠ (l1)/<0, 0> then add l1 to Min-H-IFS and  

<µ, ν>clos(Min-HIFS) (l1)= (l1)/<µ, ν> 
Step 3: Let us assume that K elements of the hierarchy L satisfy the condition  <µ, 

ν>clos(Min-HIFS) (li)=(li)/<µ, ν>. In this case the Min-H-IFS do not change.  Go to next element  lk+1 
and execute Step  4 

Step 4: The lk+1/<µ k+1, ν k+1> associated with lk+1. In this case lk+1 is added to Min-H-IFS 
with the corresponding <µ k+1, ν k+1>.  

Step 5: Repeat steps three and four until clos(Min-HIFS)=C 
For instance the H-IFS’s S1 and S2 are minimal (none of their elements is derivable). They 

cannot be reduced further. 
S1= Milk/<1,0> 
S2= {Milk/<1,0>, Whole-Milk/<0.7,0.1>, Whole-Pasteurised-milk/<1,0>, Condensed-

Milk/<0.4, 0.3>} 
In the next section, a complementary solution is proposed when it comes to lack of answers 

to a query, i.e. when the user wants to retrieve complementary answers close to his initial 
query. The H-IFS set that represents the user’s preferences is replaced by a more general one 

A null value is regarded as a partial value with all base domain values as members. We 
refer to the resultant partial value, obtained as a result of this process, as a primal partial 
value. The replacement process is thus performed by the following procedure: 
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Procedure: Replacement 

Input: A concept table R consisting of partial values, or nulls. 

Output:  A re-engineered partial value table U. 

Method: For each attribute value of R recursively replace the cell 
value by a primal partial value. For each cell of R replace, the 
primal partial value by a pruned prime-partial –value, until a 
minimal partial value is reached. 

 
If a particular member of a partial value violates the domain constraint (rule) then it is 

pruned from the minimal H-IFS primal partial value. This process is continued until all 
partial values have been pruned by the constraints as much as possible. We refer to the 
resultant partial value, obtained as a result of this process, as a minimal partial value.  

In addition in an integrated DBMS environment it will be also useful not to query all 
sources, but only those that contain information relevant to our request. This is quite critical 
for achieving better query performance. For this reason we equip our Integrated architecture 
with a repository that contains various constraints (i.e. Intuitionistic Fuzzy Range Constraints, 
Intuitionistic Fuzzy Functional Dependencies, etc) that are related to the information sources 
that participate in the Integrated Architecture. 

Range constraints: such as “The average income per person is estimated to be in the range 
of €50K”. Considering a finite universe of discourse, say X whose cardinality is N. Let us 
suppose that X={X1, X2, .… , Xn} and the Intuitionistic fuzzy number ~a given by  ~a ={(xi, 
µi, νi): xi∈X, I = 1,2….N} We can express the above constraint as follows ~Income50K {(49, 
.8, .1), (50, .9, .02) (51, .7, .15)} 

Classical data integrity constraints such as “All persons stored at a source have a unique 
identifier”.  

Functional Dependencies: for instance, a source relation S1(Name, lives, income, 
Occupation) has a functional dependency  Name→(Lives, ~Income).These constraints are 
very useful to compute answers to queries.  

There are several reasons we want to consider constraints separately from the query 
language. Describing constraints separately from the query language can allow us to do 
reasoning about the usefulness of a data source with respect to a valid user request.  

Some of source constraints can be naturally represented as local constraints. Each local 
constraint is defined on one data source only. These constraints carry a rich set of semantics, 
which can be utilized in query processing. Any projected database instance of source, these 
conditions must be satisfied by the tuples in the database.  

Definition 5.1 Let si,...,sl be l sources in a data-integrated system. Let P = {pi,..., pn } be a 
set of global predicates, on which the contents of each source s are defined. A general global 
constraint is a condition that should be satisfied by any database instance of the global 
predicates P. 

General global constraints can be introduced during the design phase of such a data-
integration system. That is, even if new sources join or existing ones leave the system, it is 
assumed that these constraints should be satisfied by any database instance of the global 
predicates. Given the global predicate Income, if a query asks for citizens with an average 
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income above ~Income60K, without checking the source contents and constraints, the 
integrated system can immediately know that the answer is empty. 

 To this extent we can interrogate the constraints repository to find out if a particular source 
contains relevant information with respect to particular request. We now consider the problem 
of aggregation for the partial value data model. In what follows we are concerned with 
symbolic attributes, which are typically described by counts and summarised by aggregated 
tables. The objective is to provide an aggregation operator which allows us to aggregate 
individual tuples to form summary tables. 

6   Summary Tables and Aggregation 

 A summary table R, is represented in the form of an Intuitionistic fuzzy relation (IFR). 
Aggregation (A): An aggregation operator A is a function A(G) where G = {<x, µF(x) , 

νF(x)>| x∈ X }  where x=<att1, …,attn> is an ordered tuple belonging to a given universe X, 
{att1, …, attn} is the set of attributes of the elements of X,  µF(x) and νF(x)  are the degree of 
membership and non-membership of x. The result is a bag of the type {<x′, µF(x′) , νF(x′)>| 
x′∈ X }. To this extent, the bag is a group of elements that can be duplicated and each one has 
a degree of µ and ν.  
Input:  Ri =  ( l, F, H) and the function A(G) 
Output: Ro =  ( lo, Fo, Ho) where 
 

• l  is a set of levels l1,…, ln, that belong  to a partial order ≤ O   
To identify the level l as part of a hierarchy we use dl. 

   l┴: base level l┬: top level 
  for each pair of levels li and lj we have the relation  
  µij : li × lj  [0,1]    νij : li × lj  [0,1]   0 < µij + νij < 1 
• F  is a set of fact instances with schema F = {<x, µF(x) , νF(x)>| x∈ X }, where 

x=<att1, …,attn> is an ordered tuple belonging to a given universe X,   µF(x) and νF(x)  
are the degree of membership and non-membership of x in the fact table F 
respectively. 

• H  is an object type history that corresponds to a structure( l, F, H′ ) which allows us 
to trace back the evolution of a structure after performing a set of operators i.e. 
aggregation 

The definition of the extended group operators allows us to define the extended group 
operators Roll up (∆), and Roll Down (Ω). 

 
Roll up (∆): The result of applying Roll up over dimension di at level dlr using the 

aggregation operator A over a relation Ri=(li ,Fi , Hi ) is another relation Ro=(lo, Fo, Ho ) 
Input:       Ri = (li ,Fi , Hi ) 
Output:   Ro = (lo ,Fo , Ho )    
  
 

         
An object of type history is a recursive structure H =  

 
 

ω  is the initial state of the 
relation. 
 
(l, A, H’)  is the state of the 
relation after performing an 
operation on it. 
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The structured history of the relation allows us to keep all the information when applying 

Roll up and get it all back when Roll Down is performed. To be able to apply the operation of 
Roll Up we need to make use of the IFSUM  aggregation operator.  

 
Roll Down (Ω): This operator performs the opposite function of the Roll Up operator. It is 

used to roll down from the higher levels of the hierarchy with a greater degree of 
generalization, to the leaves with the greater degree of precision. The result of applying Roll 
Down over a relation Ri = (l, F, H) having H=( l’, A’, H’ ) is another relation Ro= (l’, F’, H’). 
Input:  Ri=(l, F, H)  
Output:  Ro=(l’, F’, H’) where F’  set of fact instances defined by operator A. 

To this extent, the Roll Down operative makes use of the recursive history structure 
previously created after performing the Roll Up operator. 

6.1   Summarisation Paths 

The structure of any H-IFS can be described by a domain concept relation DCR = 
(Concept, Element), where each tuple describes a relation between elements of the domain on 
different levels.  

The DCR can be used in calculating recursively the different summarisation or selection 
paths as follows: 

 
 
 
If n≤2, then DCR becomes the Path table as it describes all summarisation and selection 

paths. These are entries to a knowledge table that holds the metadata on parent-child 
relationships. An example is presented below: 

 
DCR 

Concept Element 
Milk <1.0, 0.0> Pasteurised Milk <1.0, 0.0> 
Milk <1.0, 0.0> Whole Milk <0.7, 0.1> 
Milk <1.0, 0.0> Condensed Milk <0.4, 0.3> 
Pasteurised Milk <1.0, 0.0> Whole Pasteurised Milk 

<1.0, 0.0> 
Whole Milk <0.7, 0.1> Whole Pasteurised Milk 

<1.0, 0.0> 
Whole Milk <0.7, 0.1> Whole Condensed Milk 

<0.7, 0.1> 
Condensed Milk <0.4, 0.3> Whole Condensed Milk 

<0.7, 0.1> 
 

Fig. 4. Domain Concept Relation 

 

PATH DCR {x=1...(n-2) | n>2}   DCRx             
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Fig. 5 shows how our Milk hierarchy knowledge table is kept. Paths are created by running 
a recursive query that reflects the ‘PATH’ algebraic statement. The hierarchical IFS used as 
example throughout this paper comprises of 3 levels, thus calling for the SQL-like query as 
below: 

SELECT A.Concept as Grand-concept, b.concept, b.element 
FROM DCR as A, DCR as B 
WHERE A.child=B.parent; 
 
This query will produce the following paths: 
 

Path 
Grand-concept Concept Element Path Colour 

Milk  
<1.0, 0.0> 

Pasteurised 
Milk  

<1.0, 0.0> 

Whole Pasteurised Milk  
<1.0, 0.0> 

Red 

Milk  
<1.0, 0.0> 

Whole Milk  
<0.7, 0.1> 

Whole Pasteurised Milk  
<1.0, 0.0> 

Blue 

Milk  
<1.0, 0.0> 

Whole Milk  
<0.7, 0.1> 

Whole Condensed Milk  
<0.7, 0.1> 

Green 

Milk  
<1.0, 0.0> 

Condensed 
Milk  

<1.0, 0.0> 

Whole Condensed Milk 
<0.7, 0.1> 

Brown 

Fig. 5. Path Table 

 
Fig.7 presents a pictorial view of the four distinct summarisation and selection paths. 
 

Milk
<1.0, 0..0>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<1.0, 0.0>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<1.0, 0.0>

Milk
<1.0, 0..0>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<1.0, 0.0>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<1.0, 0.0>  

Fig. 6. Pictorial representation of paths 
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These paths will be used in fuzzy queries to extract answers that could be either definite or 
possible. This will be realised with the aid of the predicate (θ). 

A predicate (θ) involves a set of atomic predicates (θ1, …, θn )  associated with the aid of 
logical operators p ( i.e. ∧, ∨, etc.). Consider a predicate θ that takes the value “Whole Milk”, 
θ = “Whole Milk”. 

After utilizing the IFS hierarchy presented in Fig.7, this predicate can be reconstructed as 
follows: 

θ = θ1 ∨ θ2 ∨... ∨ θn 
In our example, θ1=”Whole Milk”, θ2=”Whole Pasteurised Milk” and θn=”Condensed 

Whole Milk”. 
The reconstructed predicate θ = (Whole Milk ∨ Whole Pasteurised Milk ∨ Condensed 

Whole Milk) allows the query mechanism to not only definite answers, but also possible 
answers. 
In terms a query retrieving data from a summary table, the output contains not only records 
that match the initial condition, but also those that satisfy the reconstructed predicate. 
Consider the case where no records satisfy the initial condition (Whole Milk). Traditional 
aggregation query would have returned no answer, however, based on our approach, the 
extended query would even in this case, return an answer, though only a possible one, with a 
specific belief and disbelief <µ, ν> . It will point to those records that satisfy the reconstructed 
predicateθ, more specifically, “Whole Pasteurised Milk and Condensed Whole Milk”.  

7   Conclusions 

We provide a means of using background knowledge to re-engineer the data representation 
into a partial value representation with the aid of H-IFS and Intuitionistic Fuzzy relational 
representation.  

The hierarchical links are defined by the “kind of, ≤” relation. The membership of an 
element in a H-IFS has consequences on the membership and non-membership of its sub 
elements in this set. The notion of H-IFS, that may be defined on a part of a hierarchy and the 
notion of closure of a H-IFS, that is explicitly defined on the whole hierarchy, using the links 
between the elements that compose the hierarchy.  

H-IFSs that have the same closure define equivalence classes, called minimal H-IFS. 
Minimal fuzzy sets are used as a basis to define the generalization of a H-IFS fuzzy set. The 
proposed methodology aims at enlarging the user preferences expressed when defining a 
query, in order to obtain related and complementary answers. 
We have discussed how domain knowledge presented in the form of background knowledge, 
such as integrity constraints, functional dependencies or details of the concept hierarchy, may 
be used to reduce the amount of missing data in the database..  

We have presented a new multidimensional model that is able to operate over data with 
imprecision in the facts and the summarisation hierarchies. Classical models imposed a rigid 
structure that made the models present difficulties when merging information from different 
but still reconcilable sources. 

This is likely to be a useful tool for decision support and knowledge discovery in, for 
example, data mediators, data warehouses, where the data are often subject to such 
imperfections. Furthermore we notice that our approach can be used for the representation of 
Intuitionistic fuzzy linguistic terms 
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