Remark on equalities between intuitionistic fuzzy sets

Krassimir T. Atanassov

Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, e-mail: krat@bas.bg

Abstract

Four equalities between intuitionistic fuzzy sets are given. An open problem is formulated. described.

Keywords: Equality, Implication, Intuitionistic fuzzy set.
Mathematics Subject Classification: 03E72

In $[1,2]$, the following equality is proved for two fixed Intuitionistic Fuzzy Sets (IFSs, see [1]) A and B :

$$
((A \cap B)+(A \cup B)) @((A \cap B) \cdot(A \cup B))=A @ B,
$$

where operations " \cap ", " \cup ", "+", "." and "@" are defined by

$$
\begin{aligned}
A \cap B & =\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
A \cup B & =\left\{\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
A+B & =\left\{\left\langle x, \mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
A \cdot B & =\left\{\left\langle x, \mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x)+\nu_{B}(x)-\nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
A @ B & =\left\{\left\langle x,\left(\frac{\left.\mu_{A}(x)+\mu_{B}(x)\right)}{2}, \frac{\left(\nu_{A}(x)+\nu_{B}(x)\right)}{2}\right\rangle\right| x \in E\right\} .
\end{aligned}
$$

Here, we shall formulate and prove four other elementary, but interesting equalities. Theorem 1: For every two IFSs A and B :

$$
(A \cap B) @(A \cup B))=(A+B) @(A . B)
$$

Proof: We shall use the fact that for every two real numbers a and b it follows

$$
\max (a, b)+\min (a, b)=a+b .
$$

Then

$$
\begin{aligned}
&(A \cap B) @(A \cup B)) \\
&=\left(\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}\right. \\
&\left.@\left\{\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}\right) \\
&=\left.\left\{\left.\left\langle x, \frac{\min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\mu_{A}(x), \mu_{B}(x)\right)}{2}, \frac{\max \left(\nu_{A}(x), \nu_{B}(x)\right)+\min \left(\nu_{A}(x), \nu_{B}(x)\right)}{2}\right\rangle \right\rvert\, x \in E\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \left.\left\{\left.\left\langle x, \frac{\mu_{A}(x)+\mu_{B}(x)}{2}, \frac{\nu_{A}(x)+\nu_{B}(x)}{2}\right\rangle \right\rvert\, x \in E\right\}\right) \\
= & \left\{\left\langlex, \frac{\left(\mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \cdot \mu_{B}(x)\right)+\mu_{A}(x) \cdot \mu_{B}(x)}{2},\right.\right. \\
& \left.\left.\frac{\nu_{A}(x) \cdot \nu_{B}(x)+\left(\nu_{A}(x)+\nu_{B}(x)-\nu_{A}(x) \cdot \nu_{B}(x)\right)}{2}\right\rangle \mid x \in E\right\} \\
= & \left\{\left\langle x, \mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\} \\
& @\left\{\left\langle x, \mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x)+\nu_{B}(x)-\nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\} \\
= & (A+B) @(A \cdot B) .
\end{aligned}
$$

The proofs of the next assertions are analogous.
Theorem 2: For every two IFSs A and B :

$$
(A \cap B) \rightarrow(A \cup B)=(A \rightarrow B) \cup(B \rightarrow A)
$$

where operation " \rightarrow " is defined by

$$
A \rightarrow B=\left\{\left\langle x, \max \left(\nu_{A}(x), \mu_{B}(x)\right), \min \left(\mu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\} .
$$

It is the standard intuitionistic fuzzy implication that is an extension of Kleene-Dienes implicaion (see [3]).
Theorem 3: For every three IFSs A, B and C :

$$
\begin{aligned}
& (A \rightarrow B) \cup(B \rightarrow C) \cup(C \rightarrow A)=(A \rightarrow C) \cup(C \rightarrow B) \cup(B \rightarrow A), \\
& (A \rightarrow B) \cap(B \rightarrow C) \cap(C \rightarrow A)=(A \rightarrow C) \cap(C \rightarrow B) \cap(B \rightarrow A) .
\end{aligned}
$$

At the moment, it is an open problem whether there are equalities similar the the last one, but for the rest intuitionistic fuzzy implications.

References

[1] Atanassov K., An equality between intuitionistic fuzzy sets, Fuzzy sets and Systems Vol. 79 (1996), No. 2, 257-258.
[2] Atanassov K., Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Heidelberg, 1999.
[3] Klir, G. and Bo Yuan, Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey, 1995.

