ICIFSTA'2016, 20–22 April 2016, Beni Mellal, Morocco Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 22, 2016, No. 2, 59–63

Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring

I. Bakhadach, S. Melliani*, M. Oukessou and L. S. Chadli

LMACS, Laboratoire de Mathématiques Appliquées & Calcul Scientifique Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco e-mail: said.melliani@gmail.com

* Corresponding author

Received: 20 February 2016 **Revised:** 15 March 2016 **Accepted:** 30 March 2016

Abstract: In this paper we further study the theory of Intuitionistic fuzzy ideals and intuitionistic fuzzy prime ideals. We have investigated these notions and shown a new result using the intuitionistic fuzzy points and a membership and nonmembership functions.

Keywords: Intuitionistic fuzzy ring, Intuitionistic fuzzy ideal, Intuitionistic fuzzy prime ideal, Intuitionistic fuzzy point.

AMS Classification: 03E72.

1 Introduction

In 1986 Atanassov introduced the notion of a intuitionistic fuzzy set as a generalization of Zadeh's fuzzy sets [15]. After the introduction of the notion of intuitionistic fuzzy subring by Hur, Kang and Song [4], many researchers have tried to generalize the notion of intuitionistic fuzzy subring. Marashdeh and Salleh [10] introduced the notion of intuitionistic fuzzy rings based on the notion of fuzzy space, Sharma [14] introduced the notion of translates of intuitionistic fuzzy subrings. The purpose of this paper is to improve the concept of intuitionistic fuzzy ideals of a ring given a new characterization using the intuitionistic fuzzy points and to show some results of fuzzy prime ideal.

2 Preliminaries

First we give the concept of intuitionistic fuzzy set defined by Atanassov as a generalization of the concept of fuzzy set given by Zadeh.

Definition 1. [1, 2] The intuitionistic fuzzy sets (in shorts IFS) are defined on a non-empty set X as objects having the form

$$A = \{ \langle x, \mu(x), \nu(x) \rangle \mid x \in X \}$$

where the functions $\mu: X \to [0,1]$ and $\nu: X \to [0,1]$ denote the degrees of membership and of non-membership of each element $x \in X$ to the set A, respectively, and $0 \le \mu(x) + \nu(x) \le 1$ for all $x \in X$.

For the sake of simplicity, we shall use the symbol $\langle \mu, \nu \rangle$ for the intuitionistic fuzzy set $A = \{\langle x, \mu(x), \nu(x) \rangle | x \in X\}.$

Definition 2. [2] Let X be a nonempty set and let $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ be IFSs of X. Then

$$A \subset B \text{ iff } \mu_A \leq \mu_B \text{ and } \nu_A \geq \nu_B,$$

$$A = B \text{ iff } A \subset B \text{ and } B \subset A,$$

$$A^c = \langle \nu_A, \mu_A \rangle$$
,

$$A \cap B = \langle \mu_A \wedge \mu_B, \nu_A \vee \nu_B \rangle,$$

$$A \cup B = \langle \mu_A \vee \mu_B, \nu_A \wedge \nu_B \rangle,$$

$$\Box A = \langle \mu_A, 1 - \mu_A \rangle, \quad \Diamond A = \langle 1 - \nu_A, \nu_A \rangle.$$

Definition 3. [3] Let $\alpha, \beta \in [0,1]$ with $\alpha + \beta \leq 1$. An intuitionistic fuzzy point, written as $x_{(\alpha,\beta)}$ is defined to be an intuitionistic fuzzy subset of R, given by

$$x_{(\alpha,\beta)}(y) = \begin{cases} (\alpha,\beta), & \text{if } x = y \\ (0,1), & \text{if } x \neq y \end{cases}$$

An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to belong in IFS $\langle \mu, \nu \rangle$ denoted by $x_{(\alpha,\beta)} \in \langle \mu, \nu \rangle$ if $\mu(x) \geq \alpha$ and $\nu(x) \leq \beta$ and we have for $x, y \in R$

$$x_{(t,s)} + y_{(\alpha,\beta)} = (x+y)_{(t \wedge \alpha, s \vee \beta)},$$

$$x_{(t,s)}y_{(\alpha,\beta)} = (xy)_{(t \wedge \alpha, s \vee \beta)}.$$

Definition 4. [11] Let R be a ring. An intuitionistic fuzzy set $A = \{\langle x, \mu(x), \nu(x) \rangle | x \in R\}$ of R is said to be an intuitionistic fuzzy subring of R (in short, IFSR) of R if $\forall x, y \in R$

i)
$$\mu(x-y) \ge \mu(x) \wedge \mu(y)$$
,

$$ii) \ \nu(x-y) \le \nu(x) \lor \nu(y),$$

iii)
$$\mu(xy) \ge \mu(x) \wedge \mu(y)$$
,

iv)
$$\nu(xy) \le \nu(x) \lor \nu(y)$$
.

Definition 5. [14] Let R be a ring. An intuitionistic fuzzy set $A = \{\langle x, \mu(x), \nu(x) \rangle | x \in R\}$ of R is said to be an intuitionistic fuzzy ideal of R (in short, IFI) of R if $\forall x, y \in R$

i)
$$\mu(x-y) \ge \mu(x) \wedge \mu(y)$$
,

ii)
$$\nu(x-y) \le \nu(x) \lor \nu(y)$$
,

iii)
$$\mu(xy) \ge \mu(x) \lor \mu(y)$$
,

iv)
$$\nu(xy) \leq \nu(x) \wedge \nu(y)$$
.

Definition 6. [5] An intuitionistic fuzzy ideal $P = \langle \mu_P, \nu_P \rangle$ of a ring R, not necessarily non-constant, is called intuitionistic fuzzy prime ideal, if for any intuitionistic fuzzy ideals $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ of R the condition $AB \subset P$ implies that either $A \subset P$ or $B \subset P$.

3 Main results

3.1 Intuitionistic fuzzy ideal

Let \underline{R} be the subset of all intuitionistic fuzzy points of R, and let \underline{A} denote the set of all intuitionistic fuzzy points contained in $A = \langle \mu_A, \nu_A \rangle$. That is, $\underline{A} = \{x_{(\alpha,\beta)} \in \underline{R} | \mu_A \geq \alpha \text{ and } \nu_A \leq \beta\}$

Theorem 1. $A = \langle \mu, \nu \rangle$ is an intuitionistic fuzzy ideal of R if and only if:

i)
$$\forall x_{(\alpha,\beta)}, y_{(\alpha',\beta')} \in \langle \mu_A, \nu_A \rangle, \ x_{(\alpha,\beta)} - y_{(\alpha',\beta')} \in \langle \mu, \nu \rangle$$

$$ii) \ \forall x_{(\alpha,\beta)} \in \underline{R}, \ \forall y_{(\alpha',\beta')} \in \ \langle \mu, \nu \rangle, \ x_{(\alpha,\beta)}y_{(\alpha',\beta')} \in \ \langle \mu, \nu \rangle.$$

Proof.

 \Rightarrow)

Suppose that $\langle \mu, \nu \rangle$ is an intuitionistic fuzzy ideal, so we have for all $x_{(\alpha,\beta)}, y_{(\alpha',\beta')} \in \langle \mu, \nu \rangle$:

$$\mu(x-y) \ge \mu(x) \land \mu(y) \ge \alpha \land \alpha'$$

and

$$\nu(x-y) \le \nu(x) \lor \nu(y) \le \beta \lor \beta'.$$

Then,

$$x_{(\alpha,\beta)} - y_{(\alpha',\beta')} = (x-y)_{(\alpha \wedge \alpha',\beta \vee \beta')} \in \langle \mu, \nu \rangle,$$

and we have for $x_{(\alpha,\beta)} \in \underline{R}$ and $y_{(\alpha',\beta')} \in \langle \mu, \nu \rangle$:

$$\mu(xy) \geq \mu(x) \vee \mu(y) \geq \mu(y) \geq \alpha' \geq \alpha \wedge \alpha'$$

and

$$\nu(xy) \le \nu(x) \land \nu(y) \le \nu(y) \le \alpha' \le \alpha \lor \alpha',$$

hence, $(x.y)_{(\alpha \wedge \alpha', \beta \vee \beta')} = x_{(\alpha,\beta)}y_{(\alpha',\beta')} \in \langle \mu, \nu \rangle$.

 \Leftarrow) Let $x, y \in R$. We have $x_{(\mu(x) \land \mu(y), \nu(x) \lor \nu(y))} \in \langle \mu, \nu \rangle$ and $y_{(\mu(x) \land \mu(y), \nu(x) \lor \nu(y))} \in \langle \mu, \nu \rangle$. Then, using the assumption we have

$$x_{(\mu(x)\wedge\mu(y),\nu(x)\vee\nu(y))} - y_{(\mu(x)\wedge\mu(y),\nu(x)\vee\nu(y))} \in \langle \mu,\nu \rangle.$$

Hence, $\mu(x-y) \ge \mu(x) \wedge \mu(y)$ and $\nu(x-y) \le \nu(x) \vee \nu(y)$.

Now we will show that $\mu(xy) \ge \mu(x) \lor \mu(y)$ and $\nu(xy) \le \nu(x) \land \nu(y)$.

Let $x, y \in R$, and suppose that $\mu(y) \ge \mu(x)$ and $\nu(x) \le \nu(y)$ so for

$$\alpha = \alpha' = \mu(x) \vee \mu(y)$$
, and $\beta = \beta' = \nu(x) \wedge \nu(y)$,

we have

$$y_{(\alpha \vee \alpha', \beta \wedge \beta')} \in \langle \mu, \nu \rangle$$

since $x_{(\alpha \vee \alpha', \beta \wedge \beta')} \in \underline{R}$ implies that

$$x_{(\alpha \vee \alpha', \beta \wedge \beta')}.y_{(\alpha \vee \alpha', \beta \wedge \beta')} \in \langle \mu, \nu \rangle.$$

Hence, $\mu(xy) \geq \mu(x) \vee \mu(y)$ and $\nu(xy) \leq \nu(x) \wedge \nu(y)$. The same is true if $\mu(x) \geq \mu(y)$ and $\nu(x) \leq \nu(y)$.

3.2 Intuitionistic fuzzy prime ideal

Theorem 2. [6] An intuitionistic fuzzy ideal $\langle \mu, \nu \rangle$ of R is an intuitionistic fuzzy prime ideal if and only if for any two intuitionistic fuzzy points $x_{(\alpha,\beta)}, y_{(\alpha',\beta')} \in \underline{R}, x_{(\alpha,\beta)}, y_{(\alpha',\beta')} \in \langle \mu, \nu \rangle$, implies either $x_{(\alpha,\beta)} \in \langle \mu, \nu \rangle$ or $y_{(\alpha',\beta')} \in \langle \mu, \nu \rangle$.

Theorem 3. A subset $\langle \mu, \nu \rangle$ of R is said to be an intuitionistic fuzzy prime ideal if only if:

- *i*) $\mu(x-y) > \mu(x) \wedge \mu(y)$,
- ii) $\nu(x-y) \leq \nu(x) \vee \nu(y)$,
- iii) $\mu(xy) = \mu(x) \vee \mu(y)$,
- *iv*) $\nu(xy) = \nu(x) \wedge \nu(y)$.

Proof. Let $\langle \mu, \nu \rangle$ be an intuitionistic fuzzy prime ideal. Suppose that $\mu(xy) > \mu(x) \vee \mu(y)$ and $\mu(x) \geq \mu(y)$, and suppose that $\nu(xy) < \nu(x) \wedge \nu(y)$ and $\nu(x) \leq \nu(y)$. Then $\mu(xy) > \mu(x) \geq \mu(y)$, and $\nu(xy) < \nu(x) \leq \nu(y)$ which implies that

$$x_{(\mu(xy),\nu(xy))} \notin \langle \mu, \nu \rangle$$
 and $y_{(\mu(xy),\nu(xy))} \notin \langle \mu, \nu \rangle$.

Using the previous theorem, we have

$$x_{(\mu(xy),\nu(xy))}y_{(\mu(xy),\nu(xy))}\notin\langle\mu,\nu\rangle$$

which is absurd. Then,

$$\mu(xy) = \mu(x) \vee \mu(y)$$
 and $\nu(xy) = \nu(x) \wedge \nu(y)$

Conversely, let $x_{(\alpha,\beta)}, y_{(\alpha',\beta')}$ be two intuitionistic fuzzy points of R, such that $x_{(\alpha,\beta)}y_{(\alpha',\beta')} \in \langle \mu, \nu \rangle$. Suppose that $x_{(\alpha,\beta)} \notin \langle \mu, \nu \rangle$ and $y_{(\alpha',\beta')} \notin \langle \mu, \nu \rangle$ for $\alpha = \alpha' = \mu(xy)$ and $\beta = \beta' = \nu(xy)$. We have $\mu(x) < \mu(xy)$ and $\mu(y) < \mu(xy)$ and $\nu(x) > \nu(xy)$ and $\nu(y) > \nu(xy)$. This implies that $x_{(\mu(xy),\nu(xy))} \notin \langle \mu, \nu \rangle$ and $y_{(\mu(xy),\nu(xy))} \notin \langle \mu, \nu \rangle$, which contradicts to $\langle \mu, \nu \rangle$ being an intuitionistic fuzzy prime ideal.

References

- [1] Atanassov, K., & Stoeva, S. (1983) Intuitionistic fuzzy sets, *Proceedings of Polish Symposium on Interval and Fuzzy Mathematics*, Poznan, 23–26.
- [2] Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
- [3] Jun, Y. B. & Song, S. Z. (2005) Intuitionistic fuzzy semi preopen sets and Intuitionistic fuzzy semi precontinuous mappings, *Journal of Appl. Math. and Computing*, 19(1–2), 467–474.
- [4] Hur, K., Kang, H. W. & Song, H. K. (2003) Intuitionistic Fuzzy Subgroups and Subrings, *Honam Math J.*, 25(1), 19–41.
- [5] Hur, K., Jang, S. Y. & Kang, H. W. (2005) Intuitionistic fuzzy ideal of a ring, *J. Korea Soc. Math. Educ. Ser. B: Pur Appl. Math.*, Vol 12, August 2005.
- [6] Kuroki, N. (1980) Fuzzy bi-ideals in semigroups, Commenl Math. Univ. St. Paul., 28, 17–21.
- [7] Kuroki, N. (1982) Fuzzy semiprime ideals in semigroups, *Fuzzy Sets and Systems*, 8, 71–79.
- [8] Malik, D. S. & Mordeson, J. N. (1990) Fuzzy prime ideals of a ring, *Fuzzy Sets and Systems*, 37, 93–98.
- [9] Malik, D. S. & Mordeson, J. N. (1991) Fuzzy maximal, radical and primary ideals of a ring, *Inform. Sci.*, 53, 237–250.
- [10] Marashdeh, M. F., & Salleh, A. R. (2011) Intuitionistic fuzzy rings, *International Journal of Algebra*, 5(1), 37–47.
- [11] Meena, K. & Thomas, K. V. (2011), Intuitionistic L-Fuzzy Subrings, *International Mathematical Forum*, 6(52), 2561–2572.
- [12] Pu, P. M. & Liu, Y. M. (1980) Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore Smith convergence, *J. Math. Anal. Appl.* 76(2), 571–599.
- [13] Rosenfeld, A. (1971) Fuzzy groups, J. Math. Anal. Appl., 35, 512–517.
- [14] Sharma, P. K. (2011) Translates of intuitionistic fuzzy subring, *International Review of Fuzzy Mathematics*, 6(2), 77–84.
- [15] Zadeh, L. A. (1965) Fuzzy sets, *Inform. and Contr.*, 8, 338–353.