# Ant Colony Algorithms for <br> Combinatorial Optimization 

Stefka Fidanova
Institute for Parallel Processing
Bulgarian Academy of Sciences

## Metaheuristics

- A metaheuristics are methods for solving a very general class of computational problems by combining user-given black-box procedures in the hope of obtaining a more efficient or more robust procedure. The name combines the Greek prefix "meta" ("beyond", here in the sense of "higher level") and "heuristic" (from عupıбкєıv, heuriskein, "to find").
- Metaheuristics are generally applied to problems for which there is no satisfactory problem-specific algorithm or heuristic; or when it is not practical to implement such a method. Most commonly used metaheuristics are targeted to combinatorial optimization problems, but of course can handle any problem that can be recast in that form, such as solving boolean equations


## Ant Colony Optimization



## Ant Colony Optimization



1


2


3


## Graph of the Problem



## Ant Colony Optimization

## Procedure ACO

```
Begin
    initialize the pheromone
    while stopping criterion not satisfied do
        position each ant on a starting node
        repeat
                for each ant do
                        chose next node
                end for
        until every ant has build a solution
        update the pheromone
    end while
end
```


## Transition Probability


$\operatorname{Prob}_{i j}^{k}(t)= \begin{cases}\frac{\tau_{i j} \eta_{i j}}{\sum_{b \in \text { allowed }_{k}(t)} \tau_{i b} \eta_{i b}} & \text { if } j \in \text { allowed }_{k}(t) \\ 0 & \text { otherwise }\end{cases}$

## Pheromone Updating



$$
\begin{aligned}
& \tau_{i j} \leftarrow \rho \tau_{i j}+\Delta \tau_{i j} \\
& 0<\rho<1 \quad \text { - evaporation }
\end{aligned}
$$

## Ant Colony Algorithms

- Ant System
- Ant Colony System
- ACO with elitist ants
- Max-Min Ant System

- ACO with additional reinforcement


## Ant System

$$
\tau_{i j} \leftarrow \rho \tau_{i j}+(1-\rho) \Delta \tau_{i j}
$$

$$
\Delta \tau_{i j}=\left\{\begin{array}{cl}
1 / F & \text { if min imisation problem } \\
F & \text { if max imization problem }
\end{array}\right.
$$

$$
0<\rho<1
$$

## Ant Colony System

$$
\begin{aligned}
& \tau_{i j} \leftarrow(1-\rho) \tau_{i j}+\rho \tau_{0} \\
& \tau_{i j} \leftarrow(1-\rho) \tau_{i j}+\rho \Delta \tau_{i j}
\end{aligned}
$$

$$
\Delta \tau_{i j}=\left\{\begin{array}{cc}
L_{g b} & \text { if }(i, j) \in \text { global best } \\
0 & \text { otherwise }
\end{array}\right.
$$

## ACO with Elitist Ants

$$
\begin{array}{ll}
\tau_{i j} \leftarrow \rho \tau_{i j} & \\
\tau_{i j} \leftarrow \tau_{i j}+(1-\rho) L & \text { if the ant is elit }
\end{array}
$$

## Max-Min Ant System

$$
\begin{aligned}
& \tau_{\max } \tau_{\min } \\
& \text { If } \tau_{i j}<\tau_{\min } \text { then } \tau_{i j}=\tau_{\min } \\
& \text { If } \tau_{i j}>\tau_{\max } \text { then } \tau_{i j}=\tau_{\max }
\end{aligned}
$$

## ACO with Additional Reinforcement

$$
\begin{aligned}
& \tau_{i j} \leftarrow \rho \tau_{i j}+\Delta \tau_{i j} \\
& 0<\rho<1 \quad-\text { evaporation } \\
& \tau_{i j} \leftarrow \alpha \tau_{i j}+q \tau_{\max }
\end{aligned}
$$


$\alpha=\left\{\begin{array}{l}1-\text { if unused movements are evaporated } \\ \rho-\text { otherwise }\end{array}\right.$ $q \leq \rho$

## Traveling Salesman Problem

- It must visit each city exactly once;
- A distant city has less chance of being chosen (the visibility);
- The more intense the pheromone trail laid out on an edge between two cities, the greater the probability that that edge will be chosen;
- Having completed its journey, the ant deposits more pheromones on all edges it traversed, if the journey is short;
- After each iteration, trails of pheromones evaporate.


## Traveling Salesman Problem



1


2


3


4

## Subset of Nodes

- N1 -> S1
- N2 -> S2 ...
- Nn -> Sn
- $N(n+1)$-> S1 ...



## Subset Estimation

$D_{j}(i)=\varphi \cdot D_{j}(i)+(1-\varphi) \cdot F_{j}(i)$
$E_{j}(i)=\varphi \cdot E_{j}(i)+(1-\varphi) \cdot G_{j}(i)$
$i \geq 1, \quad 1 \leq j \leq n$,
$F_{j}(i)=\left\{\begin{array}{cc}\frac{f_{j A}}{k_{j}} & \text { if } k_{j} \neq 0 \\ F_{j}(i-1) & \text { otherwise }\end{array} \quad G_{j}(i)=\left\{\begin{array}{cl}\frac{g_{j B}}{k_{j}} & \text { if } k_{j} \neq 0 \\ G_{j}(i-1) & \text { otherwise }\end{array}\right.\right.$

## Start Strategies

1. If $E j(i) / D j(i)>E$ then the subset $j$ is forbidden for current iteration;
2. If $E j(i) / D j(i)>E$ then the subset $j$ is forbidden for current simulation
3. If $\mathrm{Ej}(\mathrm{i}) / \mathrm{Dj}(\mathrm{i})>\mathrm{E}$ then the subset j is forbidden for K 1 iterations
4. Let $\mathrm{r} 1 \epsilon(0.5,1)$ and $\mathrm{r} 2 \epsilon(0,1)$ are random numbers. If r2>r1 randomly choose a node from $\left\{j \mid D_{j}(i)>D\right\}$
5. The same as in case 4 . but D increase with r 3 every iteration

## Thank for Your Attention



