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Abstract

Intuitionistic Fuzzy Sets (IFS) are
defined as pairs of mutually orthog-
onal fuzzy sets. We discuss this
approach from an algebraic point
of view. As a result we character-
ize two implication operators on the
collection of IFS, which on a par-
ticular subset of IFS behave as a
 Lukasiewicz and a Gödel implica-
tion.

Keywords: fuzzy sets, intuitionis-
tic fuzzy sets, orthogonality, rough
approximations.

1 Introduction

In the other work presented to this confer-
ence [6] we introduced some generalized no-
tions of orthocomplementation and some al-
gebraic structures to model them. Here, we
will make reference to those notions. In par-
ticular, we consider Heyting Wajsberg alge-
bras and we discuss their relation with Intu-
itionistic Fuzzy Sets.

2 Rough Approximations in BK

Lattices

In any wBD lattice 〈Σ,∧,∨, ′, ∼, 0, 1〉 (and
hence in any HW algebra 〈Σ,→L,→G, 0〉
which has a natural structure of BK lattice

with respect to the lattice operations a∧ b =
((a′ →L b′) →L b′)′, a ∨ b = (a →L b) →L b,
the complementations a′ := a →L 0, a∼ :=
a →G 0, and the constant element 1 := 0′ [6])
it is possible to introduce, by suitable com-
positions of the two complementations ′ (the
de Morgan or fuzzy one) and ∼ (the weak
Brouwer or intuitionistic one), the modal op-
erators of necessity ν and possibility µ de-
fined for any element a ∈ Σ respectively as
ν(a) := a′∼ and µ(a) := a∼′. It can be eas-
ily seen that a∼ = (µ(a))′ and a[ = (ν(a))′.
That is, similarly to the modal interpreta-
tion of intuitionistic logic, the Brouwer com-
plement ∼ can be interpreted as the negation
of possibility or impossibility, and the anti–
Brouwer complement as the negation of ne-
cessity or contingency.
Our modal operations ν and µ turn out to
have an S5-like behavior (see [8]), based on
a de Morgan algebra instead of on a Boolean
one .

Proposition 2.1. In any wBD lattice the
following conditions hold:

ν(x) ≤ x ≤ µ(x) [T–principle]

ν(ν(x)) = ν(x) [S4–principle]

µ(µ(x)) = µ(x)

x ≤ ν(µ(x)) [B–principle]

µ(x) = ν(µ(x)) [S5–principle]

ν(x) = µ(ν(x))

These modal operators can be used to give
an approximation of any element of the lat-



tice through exact elements. An element e

of a wBD lattice is exact (also sharp, crisp)
iff e = e∼∼ or equivalently, iff e = e[[ iff
ν(e) = e iff e = µ(e). Clearly, this is a clas-
sical situation where necessity, actuality and
possibility coincide. We remark that the so
defined exact elements have some other in-
teresting classical properties. First of all on
the set of all exact elements the two com-
plementations coincide: for every exact ele-
ment e: e′ = e∼. In particular, one has that
it satisfies the double negation law for the
Brouwer complementation, e = e∼∼. Fur-
ther, in the case of a BK lattice it is also sat-
isfied the excluded middle law (equivalently,
non contradiction law) for the Kleene nega-
tion, e ∨ e′ = 1 (equivalently, e ∧ e′ = 0).
In the sequel we use the symbol ′ to denote
this standard complementation on exact ele-
ments and the following result gives the ex-
pected characterization of the collection of
all exact set.

Proposition 2.2. Let 〈Σ,∧,∨, ′, ∼, 0, 1〉 be
a wBD (resp., BK) lattice. The set Σe :=
{e ∈ Σ : e = e∼∼} of all its exact (crisp)
elements has the structure 〈Σe,∧,∨, ′, 0, 1〉
of de Morgan (resp., Boolean) lattice.

Definition 2.3. Let 〈Σ,∧,∨, ′, ∼, 0, 1〉 be a
wBD (resp., BK) lattice. The induced rough
approximation space ([4]) is the structure
R = 〈Σ, Σe, ν, µ〉, where

• Σ is the set of approximable elements;

• Σe ⊆ Σ is the de Morgan (resp.,
Boolean) lattice of exact elements;

• ν : Σ → Σe is the inner approximation
map;

• µ : Σ → Σe is the outer approximation
map.

For any element a ∈ Σ, its rough approxima-
tion is defined as the pair:

r(a) := 〈ν(a), µ(a)〉 [with ν(a) ≤ a ≤ µ(a)]

drawn in the following diagram:

a ∈ Σ
ν

wwooooooooooo
µ

''OOOOOOOOOOO

r

��

ν(a) ∈ Σe

''OOOOOOOOOOO
µ(a) ∈ Σe

wwooooooooooo

〈ν(a), µ(a)〉

The concepts of rough approximation and
rough approximation space were developed
in order to give an abstract approach to the
concrete rough sets on information systems
introduced by Pawlak ([9, 10]). Indeed, it
turns out that the power set of the objects
of an information system is a BK lattice,
once opportunely defined the primitive oper-
ators (see [4]) and the abstract rough approx-
imation of necessity–possibility corresponds
to the usual lower–upper approximation of
rough sets theory. Thus, the underlying idea
of a rough approximation is, as in rough sets
theory, to approximate a fuzzy (imprecise,
vague) element with a pair of sharp (exact,
crisp) ones.
Note that an element e ∈ Σ is said to be ex-
act (crisp) with respect to R iff r(e) = 〈e, e〉,
i.e., iff it is exact (crisp) with respect to Σ.
The approximation r(a) is the best approx-
imation through exact elements of the ele-
ment a. In fact, for any element a ∈ Σ,
ν(a) and µ(a) are exact elements, that is
ν(a), µ(a) ∈ Σe; ν(a) (resp., µ(a)) is an in-
ner (resp., outer) approximation of a, i.e.,
ν(a) ≤ a (resp., a ≤ µ(a)); moreover, ν(a)
(resp., µ(a)) is the best inner (resp., outer)
approximation of a by sharp elements: if a
sharp e ∈ Σe is such that e ≤ a (resp., a ≤ e)
than e ≤ ν(a) (resp., µ(a) ≤ e).

An equivalent way to define a rough approx-
imation is to consider the pair necessity –
impossibility:

r⊥(a) := 〈ν(a), a∼〉 [with ν(a) ≤ (a∼)′ = µ(a)]

Needless to stress, from the approximation
r⊥(a) one can uniquely obtain the approxi-
mation r(a) and vice versa.



Let a, b be two elements of a wBD lattice.
They are said to be orthogonal, written as
a ⊥ b, iff a ≤ b′. Now, let us consider
the collection O(Σ) of all pairs 〈ai, ae〉 where
ai ⊥ ae and ai, ae ∈ Σe, i.e., of all orthogonal
pairs (also orthopairs) of exact elements from
a wBD lattice. Note that, in particular, all
rough approximations r⊥(a), for a ∈ Σ, are
elements of O(Σ) with ai := ν(a) the interior
and ae := a∼ the exterior of a.

Proposition 2.4. Let 〈Σ,∧,∨, ′, ∼, 0, 1〉 be
a wBD lattice and O(Σ) the collection of all
orthopairs of exact elements on Σ. Once de-
fined the operators

〈ai, ae〉 ⇒L〈bi, be〉

:= 〈(a′i ∧ b′e) ∨ (ae ∨ bi), ai ∧ be〉

〈ai, ae〉 ⇒G〈bi, be〉

:= 〈(a′i ∧ b′e) ∨ (ae ∨ bi), a
′

e ∧ be〉

and the element 0 = 〈0, 1〉, the structure
〈O(Σ),⇒L,⇒G,0〉 is a HW algebra.
The collection of rough approximations is
now endowed with a very rich algebraic
structure. The induced BK lattice structure
is 〈O(Σ),u,t,− ,≈ ,0,1〉, with:

• the lattice operations

〈ai, ae〉 u 〈bi, be〉 = 〈ai ∧ bi, ae ∨ be〉

〈ai, ae〉 t 〈bi, be〉 = 〈ai ∨ bi, ae ∧ be〉

whose induced partial ordering is

〈ai, ae〉 v 〈bi, be〉 iff ai ≤ bi and be ≤ ae.

We remark that this is the same partial
order obtained by the implications:

〈ai, ae〉 v 〈bi, be〉 iff 〈ai, ae〉 ⇒L 〈bi, be〉 = 1

iff 〈ai, ae〉 ⇒G 〈bi, be〉 = 1.

With respect to this partial order rela-
tion the least element is 0 = 〈0, 1〉 and
the greatest element is 1 = 〈1, 0〉;

• the two complementations

〈ai, ae〉
− = 〈ae, ai〉 (Kleene)

〈ai, ae〉
≈ = 〈ae, a

′

e〉 (Brouwer)

Thus, the necessity and possibility operators
(in this context denoted by � and ♦ respec-
tively) are

�(〈ai, ae〉) = 〈ai, a
′

i〉 = r⊥(ai)

♦(〈ai, ae〉) = 〈a′e, ae〉 = r⊥(a′e).

Hence, an orthopair 〈ai, ae〉 is exact iff ae =
a′i and thus the generic sharp orthopair is of
the form 〈a, a′〉 with a exact element from Σ
(a ∈ Σe). The mapping r⊥ : Σe → O(Σ)e

associating to any exact element a ∈ Σe

its rough approximation r⊥(a) = 〈a, a′〉 is
a Boolean algebra isomorphism.

3 Rough Approximation of Fuzzy

Sets

Let us consider the collection of all fuzzy sets
on a domain X: F(X) = [0, 1]X . For any
such fuzzy set f ∈ F(X) we consider the two
subsets of X: the certainly–yes (interior) do-
main Ai(f) := {x ∈ X : f(x) = 1} and
the certainly–no (exterior) domain Ae(f) :=
{x ∈ X : f(x) = 0} of fuzzy set f .

In [6] we showed how to give the struc-
ture of a HW algebra to F(X). It turns
out that HW exact fuzzy sets are just crisp
sets, that is {0, 1}–valued functionals, i.e.,
F(X)e = {0, 1}X .
Notice that for any subset A ⊆ X one can
introduce the associated characteristic func-
tional χA(x) = 1 if x ∈ A and 0 otherwise,
which is a crisp set. On the other hand, given
any crisp set h ∈ {0, 1}X , one has h = χAi(h),
i.e., any crisp set is the characteristic func-
tional of its certainly–yes domain. The map-
ping χ : P(X) → {0, 1}X associating to any
subset of X, A ∈ P(X), the corresponding
characteristic functional χA ∈ {0, 1}X is a
Boolean algebra isomorphism.
The modal operators of necessity and possi-
bility of a fuzzy set f induced by the HW
structure are respectively

ν(f) = χAi(f) and µ(f) = χAe(f)c



Now we are able to define a rough approx-
imation of a given fuzzy set through ex-
act elements. Precisely, let f be a fuzzy
set, then its rough approximation is the or-
thopair of crisp sets r⊥(f) = 〈ν(f), f∼〉 =
〈

χAi(f), χAe(f)

〉

, where ν(f) ≤ µ(f) = (f∼)′

(i.e., Ai(f) ∩ Ae(f) = ∅).
Further, if we consider the collection
O([0, 1]X ) of all orthopairs of crisp fuzzy
sets, i.e., all pairs 〈χAi

, χAe
〉 of crisp sets

(χAi
, χAe

∈ {0, 1}X ) such that χAi
≤

(χAe
)′ = 1 − χAe

(i.e., Ai ∩ Ae = ∅), we
can apply Proposition 2.4 to this collection
and give to it the structure of a HW algebra,
which contains the set r⊥(F(X)). In partic-
ular, according to section 2, we can define
the Kleene and the Brouwer negations and
the discussed BK structure can be derived.

Let us note that any orthopair of crisp fuzzy
sets 〈χAi

, χAe
〉 with χAi

≤ (χAe
)′ can be

identified with the pair 〈Ai, Ae〉 of mutu-
ally disjoint Ai ∩ Ae = ∅ subsets of the
universe X. The collection of all such dis-
joint pairs of subsets of X can be canonically
equipped with the HW structure inherited
from O([0, 1]X ).

4 Orthopair Fuzzy Sets and IFS

In this section, we turn our attention to Intu-
itionistic Fuzzy Sets (IFS) and their relation
with the previously discussed structures.
Let us recall that an IFS is defined as an
orthopair of fuzzy (non necessarily crisp)
sets, i.e., as a pair 〈fA, gA〉 of fuzzy sets
(fA, gA ∈ [0, 1]X ) such that for all x ∈ X,
fA(x) ≤ g′A(x) = 1 − gA(x).
Let us denote the collection of all IFSs on X
as IF(X). In IF(X), similarly to section 2,
we can introduce the lattice operators:

〈fA, gA〉 ∩ 〈fB, gB〉 = 〈fA ∧ fB, gA ∨ gB〉

〈fA, gA〉 ∪ 〈fB, gB〉 = 〈fA ∨ fB, gA ∧ gB〉

whose induced partial order is

〈fA, gA〉 ⊆ 〈fB , gB〉 iff fA ≤ fB and gB ≤ gA.

Given an element x ∈ X by 〈fA, gA〉 ⊆x

〈fB , gB〉 we mean fA(x) ≤ fB(x) and
gB(x) ≤ gA(x), thus trivially 〈fA, gA〉 ⊆
〈fB , gB〉 iff for all x ∈ X 〈fA, gA〉 ⊆x

〈fB , gB〉.
Moreover, we can define the two unusual
negations respectively as: 〈fA, gA〉

− =
〈gA, fA〉 and 〈fA, gA〉

≈ = 〈gA, g′A〉. We re-
mark that the operation − is the usual nega-
tion operator defined on IFS ([1]). The nega-
tion − is a de Morgan negation and not a
Kleene one since property (K3) A ∩ A− ⊆
B ∪ B− does not hold (see [6]).
Further, the operation ≈ is no more a
Brouwer negation since only some weaker re-
sults can be proved about it. In fact, in gen-
eral it does not satisfy the non contradiction
property ∀A, A ∧ A≈ = 0. For instance,
(1

2
, 1

2
) ∩ (1

2
, 1

2
)≈ = (1

2
, 1

2
) 6= (0,1).

However, it still satisfies

• the weak double negation law A ⊆ A≈≈,

• the de Morgan law (A∪B)≈ = A≈∩B≈,

• the interconnection rule: A≈≈ = A≈−.

So, the structure 〈IF(X),∩,∪,− ,≈ ,0,1〉 is
a de Morgan lattice with respect to the com-
plementation −, equipped with another op-
eration ≈ which gives rise to a weaker form
of Brouwer negation, where in particular the
non contradiction principle is not required
to hold (this structure has been called weak
Brouwer de Morgan lattice).
We remark that both the operators − and
≈ satisfy the general definition of intuition-
istic fuzzy complementation in the sense of
Definition 8 given in [3]:

Definition 4.1. An intuitionistic fuzzy com-
plementation is a function N : IF(X) 7→
IF(X) satisfying for any pair of IFSs
〈fA, gA〉 , 〈fB, gB〉 ∈ IF(X) the following
conditions

(N1) If 〈fA, gA〉 (x) = 〈0, 1〉 then
N(〈fA, gA〉)(x) = 〈1, 0〉 and
if 〈fA, gA〉 (x) = 〈1, 0〉 then
N(〈fA, gA〉)(x) = 〈0, 1〉,



(N2) If 〈fA, gA〉 ⊆x 〈fB , gB〉 then
N(〈fB , gB〉) ⊆x N(〈fA, gA〉).

Also the modal operators, defined accord-
ing to our approach by compositions of the
two negations, correspond to the usual ne-
cessity and possibility on IFS introduced in
[1]: �〈fA, gA〉 = 〈fA, f ′

A〉 and ♦〈fA, gA〉 =
〈g′A, gA〉 and they have an S5 modal behav-
ior on a wBD lattice.
Moreover, with regards to the operators ⇒L

and ⇒G, once considered over the whole
space of IFS, they are still well defined in
the sense that given two IFSs A,B ∈ IF(X)
then A ⇒L B ∈ IF(X) and A ⇒G B ∈
IF(X). However, they are no more a
 Lukasiewicz and Gödel implication, in fact
they satisfy only some of the axioms of HW
algebras. In particular they do not satisfy
the axioms (HW1), (HW4) and (HW9) as
shown in the following example. Let us set
A = 〈0.1,0.6〉 and B = 〈0.2,0.7〉 then

(HW1) A ⇒G A = 〈0.6,0.4〉 6= 〈1,0〉;

(HW4) A ∩ (A ⇒G B) = 〈0.1,0.6〉 6=
〈0.1,0.7〉 = A ∩ B;

(HW9) (A ⇒G B) ⇒L (A ⇒L

B) = 〈0.6,0.4〉 ⇒L 〈0.6,0.1〉 =
〈0.6,0.1〉 6= 〈1,0〉.

As a consequence the lattice operators ∩ and
∪ cannot be derived by the  Lukasiewicz im-
plication as in HW algebras (see Definition
7.1 in [6]). Further, it is not possible to in-
duce a partial order relation by the implica-
tions in the standard way a ≤ b iff a → b = 1,
since in general it does not hold neither
A ⇒G A = 〈1,0〉 nor A ⇒L A = 〈1,0〉.

However, it can be shown that both opera-
tors ⇒L and ⇒G satisfy the following defini-
tion of intuitionistic fuzzy implication which
extends to [0, 1]X the one given in [2] on the
unit interval [0, 1]:

Definition 4.2. An intuitionistic fuzzy im-
plication is a function I : IF(X)×IF(X) 7→
IF(X) which satisfies for any two IFS A =
〈fA, gA〉 and B = 〈fB, gB〉 the following
properties

(I1) If fA(x) + gA(x) = 1 and fB(x) +
gB(x) = 1 then πI(A,B)(x) = 0 (where
πC(x) is the intuitionistic fuzzy index of
the element x relative to the IFS C de-
fined as πC(x) = 1 − fC(x) − gC(x));

(I2) If 〈fA, gA〉 ⊆x 〈fB, gB〉 then
for all C = 〈fC , gC〉 ∈
IF(X) I(〈fB , gB〉 , 〈fC , gC〉) ⊆x

I(〈fA, gA〉 , 〈fC , gC〉)(x);

(I3) If 〈fA, gA〉 ⊆x 〈fB, gB〉 then
for all C = 〈fC , gC〉 ∈
IF(X) I(〈fC , gC〉 , 〈fA, gA〉) ⊆x

I(〈fC , gC〉 , 〈fB, gB〉);

(I4) If 〈fA, gA〉 (x) = 〈0, 1〉 then
I(〈fA, gA〉 (x), 〈fB, gB〉)(x) = 〈1, 0〉;

(I5) If 〈fB, gB〉 (x) = 〈1, 0〉 then
I(〈fA, gA〉 (x), 〈fB, gB〉)(x) = 〈1, 0〉;

(I6) If 〈fA, gA〉 (x) = 〈1, 0〉 and
〈fB , gB〉 (x) = 〈0, 1〉 then
I(〈fA, gA〉 (x), 〈fB, gB〉)(x) = 〈0, 1〉.

As proposed by Deschrijver (private commu-
nication relative to the unit interval [0, 1],
here extended to F(X)) it is possible to de-
fine a Gödel implication also on IF(X) as
follows

(〈fA, gA〉 ⇒G 〈fB , gB〉)(x) :=















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
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
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

































〈1, 0〉 if fA(x) ≤ fB(x)

and gA(x) ≥ gB(x)

〈1 − gB(x), gB(x)〉 if fA(x) ≤ fB(x)

and gA(x) < gB(x)

〈fB(x), 0〉 if fA(x) > fB(x)

and gA(x) ≥ gB(x)

〈fB(x), gB(x)〉 if fA(x) > fB(x)

and gA(x) < gB(x)

We remark that on the collection of “exact”
IFSs, i.e., in the case that fA, gA, fB , gB ∈
{0, 1}X this implication coincides with the
one introduced in Proposition 2.4 on the col-
lection of all orthopairs of crisp fuzzy sets.



The structure 〈IF(X),∩,∪,⇒G, 〈0,1〉〉 is a
Heyting algebra. So, the negation induced
by the implication ⇒G in the usual manner
A≈ = A ⇒G 〈0,1〉

A≈(x) =

{

〈1, 0〉 if 〈fA, gA〉 (x) = 〈0, 1〉

〈0, 1〉 otherwise

is a Brouwer negation. Further, consider-
ing also the de Morgan negation on IFS
−, it is possible to show that the structure
〈IF(X),∩,∪,⇒G, −〉 is a symmetric Heyt-
ing algebra.

5 Conclusion

A rough approximation space has been intro-
duced in the wBD lattice structure. Then,
we showed that the collection of all rough
approximations and, more generally, of all
orthopairs of exact elements, gives rise to a
HW algebra. This result is linked to IFS the-
ory since an “exact” IFS is an orthopair of
fuzzy exact sets on a BK lattice, thus the col-
lection of all such IFSs is endowed with a HW
structure. On the whole set of IFS, i.e., on
the collection of all orthopairs of fuzzy sets,
only some weaker algebras can be defined.

As a future work, it will be interesting to
give an HW algebraic structure to the col-
lection of all IFS, with the result to have a
common algebraic framework for fuzzy sets,
rough sets and intuitionistic fuzzy sets. A
first step toward this goal has already been
done with the definition of a Gödel impli-
cation on IF(X), as shown above, but as
far as we know, a  Lukasiewicz implication
on IF(X) has still to be defined.
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