Properties of the intuitionistic fuzzy implication \rightarrow_{189}

Lilija Atanassova
Institute of Information and Communication Technologies Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 2, Sofia-1113, Bulgaria, e-mail: l.c.atanassova@gmail.com

Abstract

In [7], the new intuitionistic fuzzy implication \rightarrow_{189} was defined and some of its properties were studied. Here, new properties of this implication will be discussed.

Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
AMS Classification: 03E72.

1 Introduction

The present paper is a continuation of author's research over the new intuitionistic fuzzy implication \rightarrow_{189}, defined in [7]. The text is influenced by results in [2, 4, 5], related to two other intuitionistic fuzzy implications (\rightarrow_{187} and \rightarrow_{188}), introduced by K. Atanassov, E. Szmidt and J. Kacprzyk. In their paper [6], five new intuitionistic fuzzy operations were defined and their properties were studied. On their basis, implication \rightarrow_{189} was defined.

All notations and definitions in the text are used from [1,7].
Here, following [1], we define only the classical operations "negation", "disjunction" and "conjunction". If the truth-values of variables p are q are $\langle a, b\rangle$ and $\langle c, d\rangle$, respectively, then these operations are the follows:

$$
\begin{gathered}
V\left(\neg_{1} p\right)=\langle b, a\rangle, \\
V(p \vee q)=\langle\max (a, c), \min (b, d)\rangle, \\
V(p \wedge q)=\langle\min (a, c), \max (b, d)\rangle .
\end{gathered}
$$

In [3], K. Atanassov, E. Szmidt and J. Kacprzyk called the object $\langle a, b\rangle$ an Intuitionistic Fuzzy Pair (IFP), where $a, b, a+b \in[0,1]$.

In [7], the intuitionistic fuzzy implication \rightarrow_{189} was defined by:

$$
x \rightarrow_{189} y=\langle b c, a d\rangle .
$$

and it was shown that

$$
\neg\langle a, b\rangle=\langle a, b\rangle \rightarrow_{189}\langle 0,1\rangle=\langle 0, a\rangle,
$$

therefore, we obtain a new, 54-th intuitionistic fuzzy negation

$$
\neg_{54}\langle a, b\rangle=\langle 0, a\rangle .
$$

2 Main results

For brevity, below we will write \rightarrow instead of \rightarrow_{189}.
In [7], it was checked the validity of G. F. Rose's formula $[9,11]$ that has the form:

$$
((\neg \neg x \rightarrow x) \rightarrow(\neg \neg x \vee \neg x)) \rightarrow(\neg \neg x \vee \neg x),
$$

which in the present case has the form:

$$
\left(\left(\neg_{1} \neg_{1} x \rightarrow_{189} x\right) \rightarrow_{189}\left(\neg_{1} \neg_{1} x \vee \neg_{1} x\right)\right) \rightarrow_{189}\left(\neg_{1} \neg_{1} x \vee \neg_{1} x\right)
$$

when negation is the classical negation \neg_{1}. Now, we prove
Theorem 1. Rose's formula is an IFT for \neg_{54} and \rightarrow_{189}.
Proof. Sequentially, we obtain:

$$
\begin{aligned}
&\left(\left(\neg_{54} \neg_{54} x \rightarrow x\right)\right.\left.\rightarrow\left(\neg_{54} \neg_{54} x \vee \neg_{54} x\right)\right) \rightarrow\left(\neg_{54} \neg_{54} x \vee \neg_{54} x\right) \\
&=\left(\left(\neg_{54} \neg_{54}\langle a, b\rangle\right.\right.\left.\rightarrow\langle a, b\rangle) \rightarrow\left(\neg_{54} \neg_{54}\langle a, b\rangle \vee \neg_{54}\langle a, b\rangle\right)\right) \\
& \rightarrow\left(\neg_{54} \neg_{54}\langle a, b\rangle \vee \neg_{54}\langle a, b\rangle\right) \\
&=\left(\left(\neg_{54}\langle 0, a\rangle\right.\right.\left.\rightarrow\langle a, b\rangle) \rightarrow\left(\neg_{54}\langle 0, a\rangle \vee \neg_{54}\langle a, b\rangle\right)\right) \\
& \rightarrow\left(\neg_{54}\langle 0, a\rangle \vee \neg_{54}\langle a, b\rangle\right) \\
&=((\langle 0,0\rangle \rightarrow\langle a, b\rangle) \rightarrow(\langle 0,0\rangle \vee\langle 0, a\rangle)) \rightarrow(\langle 0,0\rangle \vee\langle 0, a\rangle) \\
&=(\langle 0,0\rangle \rightarrow(\langle 0,0\rangle)) \rightarrow\langle 0,0\rangle \\
&=\langle 0,0\rangle \rightarrow\langle 0,0\rangle)=\langle 0,0\rangle,
\end{aligned}
$$

which is an IFT.
Second, we check C. A. Meredith's axiom (see, e.g., [8]).

Theorem 2. For every five formulas A, B, C, D and E, Meredith's axiom

$$
((((A \rightarrow B) \rightarrow(\neg C \rightarrow \neg D)) \rightarrow C) \rightarrow E) \rightarrow((E \rightarrow A) \rightarrow(D \rightarrow A))
$$

is an IFT for \rightarrow_{189} and for \neg_{54}.
Proof. Let $V(A)=\langle a, b\rangle, V(B)=\langle c, d\rangle, V(C)=\langle e, f\rangle, V(D)=\langle g, h\rangle, V(E)=\langle i, j\rangle$, where $a, b, \ldots, j \in[0,1]$ and $a+b \leq 1, c+d \leq 1, e+f \leq 1, g+h \leq 1$ and $i+j \leq 1$. Then

$$
\begin{gathered}
V\left(\left(\left(\left((A \rightarrow B) \rightarrow\left(\neg_{54} C \rightarrow \neg_{54} D\right)\right) \rightarrow C\right) \rightarrow E\right)\right. \\
\rightarrow((E \rightarrow A) \rightarrow(D \rightarrow A))) \\
=((((\langle a, b\rangle \rightarrow\langle c, d\rangle) \rightarrow(\langle 0, e\rangle \rightarrow\langle 0, g\rangle)) \rightarrow\langle e, f\rangle) \rightarrow\langle i, j\rangle) \\
\rightarrow((\langle i, j\rangle \rightarrow\langle a, b\rangle) \rightarrow(\langle g, h\rangle \rightarrow\langle a, b\rangle)) \\
=(((\langle b c, a d\rangle \rightarrow\langle 0,0\rangle) \rightarrow\langle e, f\rangle) \rightarrow\langle i, j\rangle) \rightarrow(\langle a j, b i\rangle \rightarrow\langle a h, b g\rangle) \\
=((\langle 0,0\rangle \rightarrow\langle e, f\rangle) \rightarrow\langle i, j\rangle) \rightarrow\langle a b h i, a b g j\rangle \\
=(\langle 0,0\rangle \rightarrow\langle i, j\rangle) \rightarrow\langle\min (b i, a, h), \min (a, j) b g\rangle \\
=(\langle 0,0\rangle \rightarrow\langle i, j\rangle) \rightarrow\langle\min (b i, a, h), \min (a, j) b g\rangle \\
=\langle 0,0\rangle .
\end{gathered}
$$

The next assertions are proved in the same manner so we will omit their proofs.
The axioms of the intuitionistic logic (see, e.g., [10]) are the following.
(IL1) $A \rightarrow A$,
(IL2) $A \rightarrow(B \rightarrow A)$,
(IL3) $A \rightarrow(B \rightarrow(A \wedge B))$,
(IL4) $(A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C))$,
(IL5) $(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$,
(IL6) $A \rightarrow \neg \neg A$,
$($ IL7) $\neg(A \wedge \neg A)$,
(IL8) $(\neg A \vee B) \rightarrow(A \rightarrow B)$,
$($ IL9) $\neg(A \vee B) \rightarrow(\neg A \wedge \neg B)$,
(IL10) $(\neg A \wedge \neg B) \rightarrow \neg(A \vee B)$,
(IL11) $(\neg A \vee \neg B) \rightarrow \neg(A \wedge B)$,
(IL12) $(A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A)$,
(IL13) $(A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A)$,
(IL14) $\neg \neg \neg A \rightarrow \neg A$,
(IL15) $\neg A \rightarrow \neg \neg \neg A$,
$($ IL16 $) \neg \neg(A \rightarrow B) \rightarrow(A \rightarrow \neg \neg B)$,
(IL17) $(C \rightarrow A) \rightarrow((C \rightarrow(A \rightarrow B)) \rightarrow(C \rightarrow B))$.
Theorem 3. Axioms IL1, ILA, IL6, IL7, IL9, ..., IL16 are IFTs, but none of them is a tautology.
The fact that the rest axioms are not IFTs is checked with finding counterexamples. For example, for IL2 we have:

$$
V(A \rightarrow(B \rightarrow A))=\langle a, b\rangle \rightarrow\langle a b, a b\rangle=\left\langle a b^{2}, a^{2} b\right\rangle .
$$

Now, for $a=\frac{1}{2}, b=\frac{1}{3}$ we obtain that

$$
\left\langle a b^{2}, a^{2} b\right\rangle=\left\langle\frac{1}{18}, \frac{1}{12}\right\rangle
$$

which, obviously, is not an IFT.
The axioms of A. Kolmogorov (see, e.g., [12]) are the following.
$(\mathrm{K} 1) A \rightarrow(B \rightarrow A)$,
(K2) $(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B))$,
(K3) $(A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C))$,
(K4) $(B \rightarrow C) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$,
(K5) $(A \rightarrow B) \rightarrow((A \rightarrow \neg B) \rightarrow \neg A)$.
Theorem 4. Only axioms $K 3, K 4$, and $K 5$ of Kolmogorov are IFTs.
The axioms of J. Łukasiewicz and A. Tarski (see, e.g., [12]) are the following.

$$
\begin{aligned}
& \text { (LT1) } A \rightarrow(B \rightarrow A), \\
& \text { (LT2) }(A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C)), \\
& \text { (LT3) } \neg A \rightarrow(\neg B \rightarrow(B \rightarrow A)), \\
& \text { (LT4) }((A \rightarrow \neg A) \rightarrow A) \rightarrow A .
\end{aligned}
$$

Theorem 5. Only axioms LT2 and LT3 of Łukasiewicz and Tarski are IFTs.

3 Conclusion

In a next research, we will study the forms and properties of the conjunctions and disjunctions that can be constructed on the basis of the implication \rightarrow_{189} and negation \neg_{54}.

References

[1] Atanassov, K. (2017) Intuitionistic Fuzzy Logics, Springer, Cham.
[2] Atanassov, K., Szmidt, E. \& Angelova. N. (2017) Properties of the intuitionistic fuzzy implication \rightarrow_{187}, Notes on Intuitionistic Fuzzy Sets, 23(3), 3-8.
[3] Atanassov, K., Szmidt, E., \& Kacprzyk. J. (2013) On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1-13.
[4] Atanassov, K., Szmidt, E., \& Kacprzyk. J. (2017) On intuitionistic fuzzy implication \rightarrow_{187}, Notes on Intuitionistic Fuzzy Sets, 23(2), 37-43.
[5] Atanassov, K., Szmidt, E., \& Kacprzyk. J. (2017) On intuitionistic fuzzy implication \rightarrow_{188}, Notes on Intuitionistic Fuzzy Sets, 23(1), 6-13.
[6] Atanassov, K., Szmidt, E., \& Kacprzyk. J. (2017) Multiplicative type of operations over intuitionistic fuzzy pairs. - In: Proc. of Flexible Query Answering Systems'2017 (H. Christiansen, H. Jaudoin, P. Chountas, T. Andreasen, H. L. Larsen, Eds.), Lecture Notes in Artificial Intelligence, 10333, Springer, Cham, 201-208.
[7] Atanassova, L. (2017) Intuitionistic fuzzy implication \rightarrow_{189}, Notes on Intuitionistic Fuzzy Sets, 23(1), 14-20.
[8] Mendelson, E. (1964) Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand.
[9] Plisko, V. (2009) A survey of propositional realizability logic, The Bulletin of Symbolic Logic, 15(1), 1-42.
[10] Rasiova, H., \& Sikorski, R. (1963) The mathematics of Metamathematics, Pol. Acad. of Sci., Warszawa.
[11] Rose, G. F. (1953) Propositional calculus and realizability, Transactions of the American Mathematical Society, 75, 1-19.
[12] Tabakov, M. (1986) Logics and axiomatics, Nauka i Izkustvo, Sofia (in Bulgarian).

