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Abstract

Since early 1960s, we have a complete description of all possible [0, 1]-based logical
operations, namely of “and”-operations (t-norms) and of “or”-operations (t-conorms).
In some real-life situations, intervals provide a more adequate way of describing un-
certainty, so we need to describe interval-based logical operations (intuitionistic fuzzy
logic can be viewed as an equivalent form of interval-valued fuzzy logic). Usually,
researchers followed a pragmatic path and simply derived these operations from the
[0, 1]-based ones. From the foundational viewpoint, it is desirable not to a priori re-
strict ourselves to such derivative operations but, instead, to get a description of all
interval-based operations which satisfy reasonable properties.

Such description is presented in this paper. It turns out that all such operations
can be described as the result of applying interval computations to the corresponding
[0, 1]-based ones.
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1 [0,1]-Based Logical Operations: Reminder

1.1 Why [0,1]-Based Logical Values

In many areas of expertise, such as medicine, geophysics, etc., human experts are needed.
Usually, there are very few top level experts, and it is not physically possible for these
few experts to solve all numerous related problems. It is therefore desirable to develop a
computer-based system which incorporates the knowledge of the top experts and uses this
knowledge either to directly solve the related problems – or, at least, to provide high-level
advise to people trying to solve these problems.

Experts can describe their knowledge in terms of statements and rules, but this formu-
lation often comes with uncertainty and ambiguity: experts are often not 100% confident
in the statements which form their knowledge, and even when they are, these statements
are formulated in terms of words of natural language (such as “large”) which do not have
precise meaning. To adequately describe the expert knowledge, we must therefore store, in
the knowledge base, not only the statements themselves, but also the indication of the degree
to which the experts are confident in these statements.

This degree is usually described by a number from the interval [0,1]. An expert’s degree
of confidence d(A) in a statement A can be determined, if, e.g., we ask an expert to estimate
his/her degree of confidence on a scale from 0 to 10. If s/he selects 8, then we take d(A) =
8/10.

1.2 Why [0,1]-Based Logical Operations

Suppose now that we know the degrees of confidence d(A) and d(B) in statements A and
B, and we know nothing else about A and B. Suppose also that we are interested in the
degree of confidence of the composite statement A&B. Since the only information available
consists of the values d(A) and d(B), we must compute d(A&B) based on these values. We
must be able to do that for arbitrary values d(A) and d(B). Therefore, we need a function
that transforms the values d(A) and d(B) into an estimate for d(A&B). Such a function is
called an “and”-operation (t-norm). If an “and”-operation f& : [0, 1]× [0, 1]→ [0, 1] is fixed,
then we take f&(d(A), d(B)) as an estimate for d(A&B).

Similarly, to estimate the degree of confidence in A ∨ B, we need an “or”-operation (t-
conorm) f∨ : [0, 1] × [0, 1] → [0, 1]. The following are the natural general requirements for
“and”- and “or”-operations:

Definition 1.

• By an “and”-operation, we mean a commutative, associative, monotonic, continuous
operation f& : [0, 1]× [0, 1]→ [0, 1] for which f&(1, a) = a and f&(0, a) = 0.

• By an “or”-operation, we mean a commutative, associative, monotonic, continuous
operation f∨ : [0, 1]× [0, 1]→ [0, 1] for which f∨(1, a) = 1 and f∨(0, a) = a.

These properties are easy to explain. For example, commutativity f&(a, b) = f&(b, a) comes
from the fact that, from a common sense viewpoint, composite statements A&B and B&A
are equivalent; therefore, we expect our “and”-operation to lead to the same degree of
certainty for both composite statements. In precise terms, this means that we expect
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f&(d(A), d(B)) = f&(d(B), d(A)) for every two statements A and B. If we denote d(A)
by a and d(B) by b, we can therefore conclude that f&(a, b) = f&(b, a) for every a and b.

Similarly, associativity f&(a, f&(b, c)) = f&(f&(a, b), c) comes from the fact that from
the common sense viewpoint, the composite statements A& (B&C) and (A&B) &C are
equivalent.

Monotonicity, i.e., the fact that a1 ≤ a2 and b1 ≤ b2, then f&(a1, b1) ≤ f&(a2, b2) (and
f∨(a1, b1) ≤ f∨(a2, b2)), comes from the fact that if our degree of confidence in A1 is smaller
than the degree of confidence in A2, and the degree of confidence in B1 is smaller than the
degree of confidence in B2, then our confidence in A1 &B1 must be smaller (or at least equal,
but not larger) than our confidence in A2 &B2.

The first two pairs of “and” and “or” operations were proposed by L. Zadeh in [29]:
f&(x, y) = min(x, y), f∨(x, y) = max(x, y), and f&(x, y) = x · y, f∨(x, y) = x + y − x · y.
Later, numerous other operations have been proposed: e.g., in [9], Giles proposed “bold and”
f&(a, b) = max(a+ b− 1, 0) and “bold or” f∨(a, b) = min(a+ b, 1).

1.3 Fuzzy Control: One of the Main Applications of Fuzzy Logic

One of the main applications of fuzzy logic is fuzzy control (see, e.g., [18]). In most in-
dustrial applications, we want to control the corresponding industrial processes in such a
way as to maximize the output within certain (physical and economical) restrictions. When
the corresponding mathematical description is linear, we can use well-known optimal con-
trol techniques to find the optimal control strategy. In reality, however, most industrial
processes are non-linear. For non-linear control problems, the situation is much more com-
plicated: there are good recipes which often work but, alas, there is still no general method
of generating an optimal (or even a reasonably good) control.

If for a certain industrial process, no known technique leads to a good quality control,
what can we do? Usually, the very fact that this process is actually used in industry means
that this process is reasonably well controlled by human controllers. Therefore, if we want to
automate this control, we must somehow transform the knowledge of these expert controllers
(operators) into an automatic control strategy.

Specifically, our goal is to describe a function which takes the sensor inputs x1, . . . , xn

(numbers) and generates the (numerical) value of the control effort u. Unfortunately, expert
operators cannot formulate their expertise in these terms. Instead, they describe their control
strategy by using uncertain (“fuzzy”) statements of the type “if the obstacle is straight ahead,
the distance to it is small, and the velocity of the car is medium, press the brakes hard”.
Fuzzy control is a methodology which translates such statements into precise formulas for
control.

Once we have selected a fuzzy “and”-operation f&(a, b) and a fuzzy “or”-operation
f∨(a, b), we are able to transform an arbitrary set of fuzzy if–then rules connecting inputs
x1, . . . , xn and the output u into a crisp function y = f(x1, . . . , xn). Indeed, let us assume
that the relation between the inputs x1, . . . , xn and the output u can be characterized by
several if–then rules:

if A11(x1) and . . . and A1n(xn) then B1(u);

. . .

if Ai1(x1) and . . . and Ain(xn) then Bi(u); (1)
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. . .

if Am1(x1) and . . . and Amn(xn) then Bm(u),

where Aij(xj) and Bi(u) are properties expressed by words from natural language. This
interpretation consists of the following steps (see, e.g., [13, 18]):

• First, we can use one of the known elicitation techniques to determine the membership
functions µA

ij(xj) and µB
i (y) corresponding to the words Aij(xj) and Bi(y).

• Then, we can use the fuzzy “and” operation f&(a, b) to determine, for each rule i, for
given input x1, . . . , xn, and for a given control u, the degree ci(u) to which the given
input and control satisfies this rule. This value is equal to

ci(u) = f&(µA
i1(x1), . . . , µ

A
in(xn), µB

i (u)). (2)

• Next, we use the fuzzy “or” operation f∨(a, b) to determine the degree µ(u) to which
one of these rules is activated:

µ(u) = f∨(c1(u), . . . , cm(u)). (3)

• Finally, we apply one of the many known defuzzification procedures – e.g., the centroid
defuzzification

ū =

∫
u · µ(u) du∫
µ(u) du

(4)

– to determine the actual control value ū which we want to apply for the given input
x1, . . . , xn.

1.4 From This Viewpoint, the More Logical Operations We Can
Find, the Better

For each pair of the “and”- and “or”-operations, we can have a reasonable fuzzy control
strategy. However, the fact that we have three pairs of operations does not necessarily mean
that we should not look for more. It is a general commonsense fact that the more options
one has, the better option one can find for some future optimization problem. This general
fact is also true for fuzzy control (and for other applications of fuzzy logic). Indeed, as we
have mentioned, Zadeh [29] originally proposed two pairs of operations:

• f&(a, b) = min(a, b), f∨(a, b) = max(a, b);

• f&(a, b) = a · b, f∨(a, b) = a+ b− a · b.

For some optimality criteria, these pairs are indeed the best; for example:

• the first pair is the best when we are interested in the operations which are the most
robust (the least sensitive) in the worst case;

• the second pair is the best when we are interested in the operations which are the most
robust (the least sensitive) in the average.

However, for other criteria, other pairs are optimal; for example:
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• when we want to achieve the most stable fuzzy control, we should use f&(a, b) =
min(a, b) and f∨(a, b) = min(a+ b, 1);

• when we want to achieve the most smooth fuzzy control, we should use f&(a, b) =
max(a+ b− 1, 0) and f∨(a, b) = max(a, b);

(for exact formulations and similar results, see, e.g., [23], the surveys [14, 18] and references
therein).

1.5 Description of All Possible [0,1]-Based Logical Operations:
Reminder

As we have just argued, it is desirable not to a priori restrict ourselves to known operations,
but, instead, to get a complete description of all possible operations. For [0, 1]-based logical
operations, such a classification is known.

This classification is related to the known fact that we can get new t-norms if we consider
different “scales” on the interval [0, 1] of all possible degrees of certainty. Namely, the
assignment of different numerical degrees to words expressing uncertainty is rather arbitrary.
Let us assume that we assign new values to these words, and let ϕ(a) be a new value assigned
to the word to which we originally assigned the value a. In this new scale, to each statement
A, instead of the original degree of certainty d(A), we assign a new degree of certainty
d′(A) = ϕ(d(A)). In the new scale, the same “and”-operation will look different. Namely,
if we know the degrees a′ = d′(A) and b′ = d′(B) in the new scale, and we want to find
d′(A&B), then we must do the following:

• first, we compute the degrees a = d(A) and b = d(B) in the old scale as a = ϕ−1(a′)
and b = ϕ−1(b′) (where ϕ−1 denotes the inverse function);

• second, we use the known t-norm f&(a, b) to compute the degree of certainty c =
f&(a, b) = f&(ϕ−1(a′), ϕ−1(b′)) of the composite statement A&B in the old scale;

• finally, we transform the degree c back into the new scale, resulting in c′ = ϕ(c) =
ϕ(f&(ϕ−1(a′), ϕ−1(b′))).

This three-step
procedure is equivalent to using an operation f ′&(a′, b′) = ϕ(f&(ϕ−1(a′), ϕ−1(b′))) and the
new operation is called isomorphic to the original t-norm f&(a, b). Isomorphic operations
provide numerous new examples of t-norms and t-conorms.

The complete description of all possible [0, 1]-based logical operations (which uses rescal-
ing and isomorphisms) has been given, in effect, in [17] (see also [13, 15, 20, 22]). It turns
out that every t-norm f&(a, b) can be described as follows:

• we subdivide the interval [0, 1] into subintervals;

• the restriction of the t-norm f&(a, b) to each of these subintervals is isomorphic either
to the “algebraic” t-norm a · b, or to max(a + b − 1, 0), or to min(a, b); this describes
the values of f&(a, b) for the case when both a and b belong to the same subinterval;

• when a and b belong to different subintervals, then f&(a, b) = min(a, b).

A similar description is known for t-conorms.
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2 Interval-Based Logical Operations: Reminder and

Formulation of a Problem

2.1 Need for Interval-Based Logical Values

Experts cannot describe their degrees of confidence precisely. At best, they can give an
interval of possible values. For example, an expert can point to 8 on a scale from 0 to 10,
but this same expert will hardly be able to pinpoint a value on a scale from 0 to 100. As
a result, the only thing that we know about the expert’s degree of confidence is that it is
closer to 8 than to 7 or to 9, i.e., that it is in the interval [0.75, 0.85].

So, to describe degrees of confidence more adequately, we must use intervals a = [a−, a+]
instead of real numbers. In this representation, real numbers can be viewed as particular –
degenerate – cases of intervals [a, a]. The idea of using intervals was originally proposed by
Zadeh himself and further developed by Bandler and Kohout [2], Türkşen [25], and others;
for a recent survey, see, e.g., [19] (see also [3, 4, 5, 6, 7]).

It is worth mentioning that an uncertainty interval a can be naturally represented in a
different form. Indeed, when the expert’s degree of belief in a statement A is represented by
an interval [a−, a+], this means that the expert’s degree of belief that A is true is at least
a−. In this case, the only information that we have about the expert’s degree of belief in the
negation ¬A is that it belongs to the interval [1 − a+, 1 − a−]; thus, the expert’s degree of
belief in ¬A is at least 1− a+. Thus:

• with degree d+(A)
def
= a−, we believe that A is true;

• with degree d−(A)
def
= 1− a+, we believe that A is false; and

• with degree 1− d+(A)− d−(A) = a+ − a−, we are not sure whether A is true or false.

Such a representation corresponds to intuitionistic fuzzy logic; see, e.g., [1] and references
therein.

2.2 Need for Interval-Based Logical Operations

Since we went from numbers to intervals in our description of degrees of certainty, we must
have “and” and “or” operations as functions from intervals to intervals. For example, in
fuzzy control, if the expert controller’s degrees of certainty in the properties Aij(xj) and
Bi(u) (like “small”) are described by intervals, we need operations on intervals to combine
these degrees and to generate the resulting control value.

2.3 Currently Used Interval-Based Logical Operations: Reminder

Traditionally, researchers followed a pragmatic path and simply derived these operations
from the [0, 1]-based ones. Namely, when an expert says that his/her degree of certainty
in a statement A belongs to the interval [a−, a+], we can interpret it as meaning that the
(unknown) actual degree of confidence can be any number from this interval. With this
interpretation in mind, it is natural to define, e.g., an interval “and”-operation as follows:
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• First, we select a [0, 1]-based “and”-operation (t-norm) f&(a, b). This operation cor-
responds to the case when an expert knows the exact values of his/her degrees of cer-
tainty, i.e., when the intervals a = [a−, a+] and b = [b−, b+] are degenerate (a− = a+

and b− = b+).

• Next, when we know the interval degrees a and b, we interpret these intervals by saying
that a can take any value from a and b can take any value from b. Thus, as the degree
corresponding to A&B, it is natural to take the set of all possible values of f&(a, b)
when a ∈ a and b ∈ b. In precise terms, we define f&(a,b) as follows:

f&(a,b) = {f&(a, b) | a ∈ a, b ∈ b}.

This formula is a particular case of the so-called interval computations [10, 11, 12, 21]. Since
the function f&(a, b) is monotonically increasing and continuous, the resulting set is easy to
describe:

f&([a−, a+], [b−, b+]) = [f&(a−, b−), f&(a+, b+)].

We can use a similar “pragmatic” approach and define an interval-based “or” operation as

f∨([a
−, a+], [b−, b+]) = [f∨(a

−, b−), f∨(a
+, b+)].

For example, if we start with f&(a, b) = min(a, b) and f∨(a, b) = max(a, b), we get interval
operations

f&([a−, a+], [b−, b+]) = [min(a−, b−),min(a+, b+)];

f∨([a
−, a+], [b−, b+]) = [max(a−, b−),max(a+, b+)].

When we start with f&(a, b) = a · b and f∨(a, b) = a+ b− a · b, we get the following interval
operations:

f&([a−, a+], [b−, b+]) = [a− · b−, a+ · b+];

f∨([a
−, a+], [b−, b+]) = [a− + b− − a− · b−, a+ + b+ − a+ · b+].

In the general case, the resulting interval operations satisfy the same natural properties of
associativity, commutativity, etc. as the original [0, 1]-based ones (see, e.g., [20]).

2.4 Need for a Description of All Possible Interval-Based Logical
Operations: Reminder

As we have already mentioned when we described [0, 1]-based operations, the fact that we
have a class of operations does not necessarily mean that we should not look for more –
because the more options one has, the better option one can find for some future optimization
problem. From this commonsense viewpoint, it is desirable not to a priori restrict ourselves
to such “derivative” interval operative but, instead, to get a complete description of all
possible interval-based operations.
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2.5 Description of All Possible Interval-Based Logical Operations:
What Was Known and What We Prove in This Paper

The task of obtaining a description of all possible interval-based logical operations was
started in a pioneer paper by Zuo [30] who described all interval-based operations which are
strictly monotonic (in some reasonable sense). In this paper, we extend Zuo’s results and
find a description of all possible interval-based logical operations (which satisfy reasonable
properties like commutativity and monotonicity).

Specifically, we show that the above interval-computation operations are the only
ones possible. Thus, we provide a fundamental justification for the traditional (interval-
computation) approach.

3 Towards Formalization of the Problem: How to De-

fine Monotonicity for Interval Operations?

3.1 Why Is It Important to Define Monotonicity?

An important part of the definition of t-norm and t-conorm is the requirement that these
operations are monotonic, i.e., that if a1 ≤ a2 and b1 ≤ b2, then f&(a1, b1) ≤ f&(a2, b2) and
f∨(a1, b1) ≤ f∨(a2, b2). For [0, 1]-based operations, these properties are easy to formalize,
because the order ≤ is well defined on the interval [0, 1]. For interval degrees, however, the
situation is less clear.

If we know the interval degrees a1 = [a−1 , a
+
1 ] and a2 = [a−2 , a

+
2 ] for two statements A1

and A2, this means that the actual degree of confidence a1 in A1 can take any value from the
interval a1, and the actual degree of confidence a2 in A2 can take any value from the interval
a2. If the intervals a1 and a2 intersect, then, depending on the selection of the values ai ∈ ai,
we may have a1 < a2 and we may also have a2 < a1.

For example, if a1 = [0.7, 0.9] and a2 = [0.8, 1.0], then:

• on one hand, we may have a1 = 0.7 ∈ a1 and a2 = 1.0 ∈ a2, in which case a1 < a2;

• on the other hand, we may have a1 = 0.9 ∈ a1 and a2 = 0.8 ∈ a2, in which case
a1 > a2.

Comment. A reader may notice the similarity between this example and problems from
constraint propagation (see, e.g., [16, 24, 26, 27]). To get a better understanding of our
problem, let us explicitly describe the similarity and the difference between similar problems
from constraint propagation and the problems considered in this section.

A typical related constraint propagation problem would be formulated as follows. Sup-
pose that in addition to the domains a1 = [0.7, 0.9] and a2 = [0.8, 1.0] of two quantities a1

and a2, we know that a1 ≥ a2. We can say that we have three constraints:

• the domain a1 = [0.7, 0.9] is a constraint on the value of the first quantity a1; it means
that the value a1 must satisfy the inequality 0.7 ≤ a1 ≤ 0.9;

• the domain a2 = [0.8, 1.0] is a constraint on the value of the second quantity a2; it
means that the value a1 must satisfy the inequality 0.8 ≤ a2 ≤ 1.0;
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• finally, the inequality a1 ≥ a2 is a joint constraint which relates the values of both
variables.

These constraints lead to the updating of the previously known constraints and to the ap-
pearance of the new constraints. The corresponding process of updating previously known
constraints and of discovering new (derivative) constraints is called constraint propagatation.
In the above example, we can use the three constraints to update a constraint on a2, namely,
to deduce a stricter bound on a2: Indeed, since a2 ≤ a1, and a1 ≤ 0.9, we can conclude that
a2 ≤ 0.9 and hence, a2 can only take values from a (narrower) interval [0.8, 0.9]. In more
general terms:

• in constraint propagation:

• we have intervals of possible values of certain quantities, and

• we know the relations between the values of these quantities

(and we use these relations to narrow down the intervals).

• In this section, we consider the “inverse” problem:

• we know the intervals of possible values of certain quantities, and

• we want to find the relations between the values of these quantities.

3.2 Solution: Operations “Necessarily ≤” and “Possibly ≤”

We have already mentioned that for interval degrees a1 and a2, it is sometimes not clear
whether a1 ≤ a2 or not. However, the situation is not hopeless: we have the following two
natural order-like relations:

Definition 2. Let a1 = [a−1 , a
+
1 ] and a2 = [a−2 , a

+
2 ] be two intervals.

• We say that a1 is necessarily ≤ a2 (and denote it by a1 ≤� a2) if a1 ≤ a2 for every
a1 ∈ a1 and for every a2 ∈ a2.

• We say that a1 is possibly ≤ a2 (and denote it by a1 ≤♦ a2) if a1 ≤ a2 for some a1 ∈ a1

and a2 ∈ a2.

It is therefore natural to require that the desired interval-based logical operations be mono-
tonic relative to both these operations, i.e., that:

• if a1 ≤� a2 and b1 ≤� b2, then f&(a1,b1) ≤� f&(a2,b2);

• if a1 ≤♦ a2 and b1 ≤♦ b2, then f&(a1,b1) ≤♦ f&(a2,b2).

We can describe these new monotonicity requirements in general terms:

Definition 3. Let L be an arbitrary (partially) ordered set.

• Let a− and a+ be two points from L for which a− ≤ a+. The set

{b | a− ≤ b ≤ a+}

will be called an interval and denoted by [a−, a+].
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• The set of all intervals over L will be denoted by II(L).

For intervals over an arbitrary ordered set L, we can use Definition 2 to define relations
≤� and ≤♦. Proposition 1 holds for this case as well. Monotonicity with respect to these
operations can then be defined as follows:

Definition 4. Let n be an arbitrary positive integer.

• We say that an n-ary interval operation F : II(L)× . . .× II(L)→ II(L) is ≤�-monotonic
if a1 ≤� a2, . . . , b1 ≤� b2 imply that F (a1, . . . ,b1) ≤� F (a2, . . . ,b2).

• We say that an n-ary interval operation F : II(L)× . . .× II(L)→ II(L) is ≤♦-monotonic
if a1 ≤♦ a2, . . . , b1 ≤♦ b2 imply that F (a1, . . . ,b1) ≤♦ F (a2, . . . ,b2).

3.3 Solution Simplified

At first glance, the above solution may seem somewhat complicated. Indeed, if we try to
use the above definitions to check, e.g., whether a1 is necessarily ≤ than a2, then we will
have to check infinitely many inequalities a1 ≤ a2 for all possible pairs a1 ∈ a1 and a2 ∈ a2.
Luckily, the above definition can be easily simplified; indeed, the following result can be
easily proven:

Proposition 1.

• a1 ≤� a2 ↔ a+
1 ≤ a−2 ;

• a1 ≤♦ a2 ↔ a−1 ≤ a+
2 .

3.4 Simple to Check But Not Easy to Analyze

The above reformulation shows that both relations ≤� and ≤♦ are easy to check. However,
this same result shows that these relations are not easy to analyze, because they are not
orders [28].

Indeed, an order ≤ is reflexive (i.e., a ≤ a for every a), but the relation ≤� is not reflexive:
if a− < a+, then [a−, a+] 6≤� [a−, a+]. One might suspect that ≤� is a strict order, i.e., a
anti-reflexive relation (for which a 6< a for all a), but this is not true either: for degenerate
intervals, the relation is reflexive: a ≤� a. Similarly, the order ≤ should be transitive (if
a ≤ b and b ≤ c, then a ≤ c), but the relation ≤♦ is not transitive: e.g., [0.9, 1.0] ≤♦ [0, 1],
[0, 1] ≤♦ [0, 0.1], but [0.9.1] 6≤♦ [0, 0.1].

Since these relations are not orders, we cannot use standard results about monotonicity,
and we therefore have to prove everything “from scratch”. This is what we will do in the
next section. An interesting auxiliary question – originally formulated in [28] – is to give
a complete algebraic characterization of these relations. This characterization is given in
Section 4.

3.5 Additional Monotonicity Property: Inclusion Monotonicity

Let us show that, in addition to ≤�- and ≤♦-monotonicity, it is natural to require one more
monotonicity property for interval operations. Indeed, suppose that initially, we had a2 and
b2 as sets of possible values of degrees of confidence in A and B. Then, by applying the
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interval “and”-operation f&, we can conclude that the degree of confidence in A&B is in
f&(a2,b2).

Suppose now that we have narrowed down our degrees of confidence to a1 ⊆ a2 and
b1 ⊆ b2. If we apply the same interval “and”-operation to the new degrees of confidence, we
get a new interval f&(a1,b1). Since we have narrowed down our intervals of possible degrees
of confidence, it can happen that some previously possible degrees of confidence in A&B are
not possible anymore. But it is reasonable to require that if a value is now possible, then it
was possible earlier as well (when we had even less knowledge about degrees of confidence).
In other words, we require that every number from f&(a1,b1) should belong to f&(a2,b2).

In other words, we require that if a1 ⊆ a2 and b1 ⊆ b2, then f&(a1,b1) ⊆ f&(a2,b2).
In mathematical terms, we require that the interval “and”-operation f&(a,b) be monotonic
relative to set inclusion ⊆, i.e., in short, inclusion monotonic.

Definition 5. Let n be an arbitrary positive integer. We say that an n-ary interval operation
F : II(L) × . . . × II(L) → II(L) is inclusion-monotonic if a1 ⊆ a2, . . . , b1 ⊆ b2 imply that
F (a1, . . . ,b1) ⊆ F (a2, . . . ,b2).

Now, we are ready for the main result.

4 Main Result

Although our main interest is in binary operations over subintervals of the interval [0, 1], we
will formulate this result in the most general terms: as a result about operations of arbitrary
arity over subintervals of an arbitrary ordered set L.

Definition 6. Let n be an arbitrary positive integer. We say that an n-ary interval operation
F : II(L) × . . . × II(L) → II(L) is obtained by interval computations if there exists an n-ary
≤-monotonic function f : L× . . .× L→ L for which

F ([a−, a+], . . . , [b−, b+]) = [f(a−, . . . , b−), f(a+, . . . , b+)].

Theorem 1.

• Every operation F obtained by interval computations is ≤�-monotonic, ≤♦-monotonic,
and inclusion-monotonic.

• Every ≤�-monotonic, ≤♦-monotonic, and inclusion-monotonic interval operation F is
obtained by interval computations.

The second part of this theorem says that every interval-based operation which satisfies
the above natural monotonicity requirement is obtained by interval computations. Thus, for
binary operations over II([0, 1]), we did provide a fundamental justification for the traditional
pragmatic approach to interval-valued operations.

Editorial Comment. For the convenience of the readers who are interested in the results
but not in the technical details of the proofs, all the proofs are placed in the special Proofs
section located at the end of the paper.

Technical Comment. In the second part of Theorem 1, we required that the interval operation
F be both ≤�-monotonic and ≤♦-monotonic. As one can see from the proof, it is sufficient
to require that F is ≤�-monotonic; then ≤♦-monotonicity follows automatically.
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Historical Comment. A similar result was proven, in [8], under a different monotonicity
assumption: that the operation F is monotonic relative to the component-wise order:

[a−1 , a
+
1 ] ≤ [a−2 , a

+
2 ]↔ (a−1 ≤ a−2 & a+

1 ≤ a+
2 ).

In contrast to the relations ≤� and ≤♦, the above relation is an order.

5 Auxiliary Results

Normally, we require that the relation ≤ between degrees of certainty be an order, i.e., a
relation which satisfies the following three properties:

• it is reflexive (a ≤ a);

• it is transitive (a ≤ b and b ≤ c imply a ≤ c); and

• it is antisymmetric (a ≤ b and b ≤ a imply a = b).

In the previous section, we mentioned that neither ≤� not ≤♦ are orders. What are they?
In this section, we give exact algebraic characterizations of these two relations. To

describe these results, let us recall the definition of a restriction of a relation to a subset.
Let S be an arbitrary set, let R be an arbitrary relation on this set, and let S ′ ⊆ S be a
subset of S. Then, we define a restriction R|S′ of R to S ′ as follows: if a, b ∈ S ′ then aR|S′ b
if and only if aR b.

Theorem 2.

• Let L be an arbitrary partially ordered set, and let S be an arbitrary subset of II(L).
Then, the restriction of ≤� on S is transitive and antisymmetric.

• Let S be an arbitrary set with a transitive antisymmetric relation R. Then, there exists
a partially ordered set L and a subset S ′ of the interval set II(L) such that the relation
R on S is isomorphic to the restriction of ≤� to S ′.

Theorem 3.

• Let L be an arbitrary partially ordered set, and let S be an arbitrary subset of II(L).
Then, the restriction of ≤♦ on S is reflexive.

• Let S be an arbitrary set with a reflexive relation R. Then, there exists a partially
ordered set L and a subset S ′ of the interval set II(L) such that the relation R on S is
isomorphic to the restriction of ≤♦ to S ′.

So, both relations appear naturally if we divide the three properties describing order into
two groups: reflexivity in one group, and transitivity and antisymmetry in another group.

• If we only keep properties from the first group, we get ≤♦.

• If we only keep properties from the second group, we get ≤�.

• If we keep properties from both groups, we get a normal order relation.
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6 Proofs

6.1 Proof of Theorem 1

1◦. The first part is reasonable straightforward: if the interval operation F is obtained by
interval computations from some monotonic operation

f : L× . . .× L→ L,

then from ≤-monotonicity of f , one can easily prove that F is ≤�-, ≤♦-, and inclusion-
monotonic.

2◦. To complete the proof of the theorem, we must therefore prove its second part: that
every ≤�-, ≤♦-, and inclusion-monotonic interval operation F is obtained by interval com-
putations.
We will actually prove this result without requiring that F is ≤♦-monotonic. Then, from
the first part, it will follow that ≤♦-monotonicity is automatically satisfied.

So, let F be ≤�- and inclusion-monotonic. The result of applying F is an interval. Let
us denote its lower endpoint by F− and its upper endpoint by F+.

2.1◦. Let us first prove that when all inputs to F are degenerate intervals, then the output
is also degenerate, i.e., for every a, . . . , b ∈ L, we have

F−([a, a], . . . , [b, b]) = F+([a, a], . . . , [b, b]).

Indeed, by definition of ≤�, for every a ∈ L, we have

[a, a] ≤� [a, a].

So, [a, a] ≤� [a, a], . . . , [b, b] ≤� [b, b], and due to ≤�-monotonicity of the operation F , we
conclude that

F ([a, a], . . . , [b, b]) ≤� F ([a, a], . . . , [b, b]).

By definition of ≤�, from

F−([a, a], . . . , [b, b]) ∈ F ([a, a], . . . , [b, b])

and
F+([a, a], . . . , [b, b]) ∈ F ([a, a], . . . , [b, b]),

we can conclude that

F+([a, a], . . . , [b, b]) ≤ F−([a, a], . . . , [b, b]).

On the other hand, since F− and F+ are endpoints of the interval, we have

F−([a, a], . . . , [b, b]) ≤ F+([a, a], . . . , [b, b]).

Thus,
F−([a, a], . . . , [b, b]) = F+([a, a], . . . , [b, b]).

The statement is proven.
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2.2◦. Let us define a function f : L × . . . × L → L as follows: for every a, . . . , b ∈ L, we
define

f(a, . . . , b)
def
= F−([a, a], . . . , [b, b]) = F+([a, a], . . . , [b, b]).

Then, for degenerate intervals, we have

F ([a, a], . . . , [b, b]) = [f(a, . . . , b), f(a, . . . , b)].

We will complete the proof of the theorem by showing two things:

• that thus defined function f is monotonic, and

• that
F ([a−, a+], . . . , [b−, b+]) = [f(a−, . . . , b−), f(a+, . . . , b+)]

for all possible intervals [a−, a+], . . . , [b−, b+] ∈ II(L).

2.3◦. Let us prove that the function f (defined in Part 2.2 of this proof) is monotonic. In
other words, let us prove that if a1 ≤ a2, . . . , b1 ≤ b2, then f(a1, . . . , b1) ≤ f(a2, . . . , b2).

Indeed, let a1 ≤ a2, . . . , b1 ≤ b2. By definition of ≤�, we can therefore conclude that
[a1, a1] ≤� [a2, a2], . . . , [b1, b1] ≤� [b2, b2]. Due to ≤�-monotonicity of the operation F , we
conclude that

F ([a1, a1], . . . , [b1, b1]) ≤� F ([a2, a2], . . . , [b2, b2]).

We already know, from Part 2.3 of this proof, that

F ([a1, a1], . . . , [b1, b1]) = [f(a1, . . . , b1), f(a1, . . . , b1)]

and
F ([a2, a2], . . . , [b2, b2]) = [f(a2, . . . , b2), f(a2, . . . , b2)].

Thus, the above “necessarily ≤” relation means that

f(a1, . . . , b1) ≤ f(a2, . . . , b2).

The statement is proven.

2.4◦. Let us now prove that

F ([a−, a+], . . . , [b−, b+]) = [f(a−, . . . , b−), f(a+, . . . , b+)]

for all possible intervals [a−, a+], . . . , [b−, b+] ∈ II(L), i.e., that for all possible intervals,

F−([a−, a+], . . . , [b−, b+]) = f(a−, . . . , b−)

and
F+([a−, a+], . . . , [b−, b+]) = f(a+, . . . , b+).

2.4.1◦. Let us first prove that

f(a−, . . . , b−) ≤ F−([a−, a+], . . . , [b−, b+]).
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Indeed, from the definition of ≤�, we can easily conclude that for every interval [a−, a+], we
have [a−, a−] ≤� [a−, a+].

From the fact that [a−, a−] ≤� [a−, a+], . . . , [b−, b−] ≤� [b−, b+], and that F is ≤�-
monotonic, we conclude that

F ([a−, a−], . . . , [b−, b−]) ≤� F ([a−, a+], . . . , [b−, b+]).

According to Proposition 1, this means that

F+([a−, a−], . . . , [b−, b−]) ≤ F−([a−, a+], . . . , [b−, b+]).

We already know, from Part 2.2 of this proof, that

F+([a−, a−], . . . , [b−, b−]) = f(a−, . . . , b−).

Thus, the above inequality is exactly what we want to prove. The statement is proven.

2.4.2◦. Let us now prove that

F−([a−, a+], . . . , [b−, b+]) ≤ f(a−, . . . , b−).

Indeed, for each of the input intervals, we have [a−, a−] = {a−} ⊆ [a−, a+], . . . , [b−, b−] =
{b−} ⊆ [b−, b+]. Since the operation F is inclusion-monotonic, we conclude that

F ([a−, a−], . . . , [b−, b−]) ⊆ F ([a−, a+], . . . , [b−, b+]) =

[F−([a−, a+], . . . , [b−, b+]), F+([a−, a+], . . . , [b−, b+])].

Due to Parts 2.1 and 2.2. of this proof, we have

F ([a−, a−], . . . , [b−, b−]) = {f(a−, . . . , b−)}.

Thus, the above inclusion means that

f(a−, . . . , b−) ∈ [F−([a−, a+], . . . , [b−, b+]), F+([a−, a+], . . . , [b−, b+])].

By definition of an interval, this means, in particular, that

F−([a−, a+], . . . , [b−, b+]) ≤ f(a−, . . . , b−).

The statement is proven.

2.4.3◦. From Parts 2.4.1 and 2.4.2 of this proof, we can now conclude that

F−([a−, a+], . . . , [b−, b+]) = f(a−, . . . , b−).

2.4.4◦. Let us now start proving the second inequality from Part 2.4 by first proving that

F+([a−, a+], . . . , [b−, b+]) ≤ f(a+, . . . , b+).
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Indeed, from the definition of ≤�, we can easily conclude that for every interval [a−, a+], we
have [a−, a+] ≤� [a+, a+].

From the fact that [a−, a+] ≤� [a+, a+], . . . , [b−, b+] ≤� [b+, b+], and that F is ≤�-
monotonic, we conclude that

F ([a−, a+], . . . , [b−, b+]) ≤� F ([a+, a+], . . . , [b+, b+]).

According to Proposition 1, this means that

F+([a−, a+], . . . , [b−, b+]) ≤ F−([a+, a+], . . . , [b+, b+]).

We already know, from Part 2.2 of this proof, that

F−([a+, a+], . . . , [b+, b+]) = f(a+, . . . , b+).

Thus, the above inequality is exactly what we want to prove. The statement is proven.

2.4.5◦. Let us now prove that

f(a+, . . . , b+) ≤ F+([a−, a+], . . . , [b−, b+]).

Indeed, for each of the input intervals, we have [a+, a+] = {a+} ⊆ [a−, a+], . . . , [b+, b+] =
{b+} ⊆ [b−, b+]. Since the operation F is inclusion-monotonic, we conclude that

F ([a+, a+], . . . , [b+, b+]) ⊆ F ([a−, a+], . . . , [b−, b+]) =

[F−([a−, a+], . . . , [b−, b+]), F+([a−, a+], . . . , [b−, b+])].

Due to Parts 2.1 and 2.2. of this proof, we have

F ([a+, a+], . . . , [b+, b+]) = {f(a+, . . . , b+)}.

Thus, the above inclusion means that

f(a+, . . . , b+) ∈ [F−([a−, a+], . . . , [b−, b+]), F+([a−, a+], . . . , [b−, b+])].

By definition of an interval, this means, in particular, that

f(a+, . . . , b+) ≤ F+([a−, a+], . . . , [b−, b+]).

The statement is proven.

2.4.6◦. From Parts 2.4.4 and 2.4.5 of this proof, we can now conclude that

F+([a−, a+], . . . , [b−, b+]) = f(a+, . . . , b+).

The theorem is proven.
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6.2 Proof of Theorem 2

The first part of the theorem easily follows from Proposition 1, so it is sufficient to prove the
second part.

Let S be a set with a transitive antisymmetric relation R. Let

Sr
def
= {a ∈ S | aR a}

denote the set of all reflexive elements of S, and let

Si
def
= {a ∈ S | ¬aR a}

denote the set of all irreflexive elements of S. Let us define L as

L
def
= Sr ∪ (Si × {−,+}),

i.e., as a set consisting of:

• all reflexive element of S, and

• of pairs 〈a,−〉 and 〈a,+〉, where a ∈ Si,

and let us define the relation ≤ on L as follows:

• for every a, b ∈ Sr, we have a ≤ b if and only if aR b;

• for a ∈ Sr and b ∈ Si, we have:

• a ≤ 〈b,−〉 if and only if aR b, and

• a ≤ 〈b,+〉 if and only if aR b;

• for a ∈ Si and b ∈ Sr, we have:

• 〈a,−〉 ≤ b if and only if aR b, and

• 〈a,+〉 ≤ b if and only if aR b.

• for every a ∈ Si, 〈a,−〉 ≤ 〈a,−〉, 〈a,−〉 ≤ 〈a,+〉, and 〈a,+〉 ≤ 〈a,+〉;

• finally, for a, b ∈ Si, a 6= b, we have:

• 〈a,−〉 ≤ 〈b,−〉 if and only if aR b;

• 〈a,−〉 ≤ 〈b,+〉 if and only if aR b;

• 〈a,+〉 ≤ 〈b,−〉 if and only if aR b;

• 〈a,+〉 ≤ 〈b,+〉 if and only if aR b.

One can easily check that this relation is an order.
Let us now assign, to every element a ∈ S, an interval from II(L). Specifically, we assign:

• to every element a ∈ Sr, a degenerate interval [a, a] ∈ II(L), and

• to every element a ∈ Si, an interval [〈a,−〉, 〈a,+〉] ∈ II(L).
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Due to Proposition 1 and the definition of the order on L, we have the following equivalences:

• when a, b ∈ Sr, then [a, a] ≤� [b, b] if and only if aR b;

• when a ∈ Sr and b ∈ Si, then [a, a] ≤� [〈b,−〉, 〈b,+〉] if and only if aR b;

• when a ∈ Si and b ∈ Sr, then [〈a,−〉, 〈a,+〉] ≤� [b, b] if and only if aR b;

• finally, when a, b ∈ Si, then [〈a,−〉, 〈a,+〉] ≤� [〈b,−〉, 〈b,+〉] if and only if aR b.

Thus, the original relation R on S is isomorphic to the restriction of ≤� to the set S ′ of all
intervals assigned to elements of S. The theorem is proven.

6.3 Proof of Theorem 3

The first part of this theorem easily follows from the definition of ≤♦, so it is sufficient to
prove the second part.

Let S be a set with a reflexive relation R. Let us define L as S × {−,+}, i.e., as the set
of all pairs 〈a,−〉 and 〈a,+〉, where a ∈ S, and let us define the relation ≤ on L as follows:

• for every a ∈ S, 〈a,−〉 ≤ 〈a,−〉, 〈a,−〉 ≤ 〈a,+〉, and 〈a,+〉 ≤ 〈a,+〉;

• for a 6= b, we have 〈a,−〉 ≤ 〈b,+〉 if and only if aR b;

• for every a and b, 〈a,+〉 6≤ 〈b,−〉.

One can easily check that this relation is an order.
Let us now assign, to every element a ∈ S, an interval [〈a,−〉, 〈a,+〉] ∈ II(L). Due to

Proposition 1 and the definition of the order on L, we have [〈a,−〉, 〈a,+〉] ≤♦ [〈b,−〉, 〈b,+〉]
if and only if aR b. Thus, the original relation R on S is isomorphic to the restriction of ≤♦
to the set S ′ of all intervals [〈a,−〉, 〈a,+〉]. The theorem is proven.
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