Fourth International Workshop on IFSs
Banska Bystrica, Slovakia, 13 Oct. 2008
NIFS 14 (2008), 4, 6-10

SOME PROPERTIES OF TWO OPERATIONS OVER INTUITIONISTIC FUZZY SETS

Beloslav Riećan ${ }^{1}$ and Krassimir T. Atanassov ${ }^{2}$
${ }^{1}$ Faculty of Natural Sciences, Matej Bel University
Department of Mathematics
Tajovského 40
97401 Banská Bystrica, Slovakia and
Mathematical Institute of Slovak Acad. of Sciences
Štefánikova 49
SK-81473 Bratislava
e-mail:
riecan@fpv.umb.sk
${ }^{2}$ CLBME - Bulgarian Academy of Sciences, Sofia-1113, P.O.Box 12
e-mail: krat@bas.bg

1 Introduction

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1
$$

Let for every $x \in E$:

$$
\pi_{A}(x)=1-\mu_{A}(x)-\nu_{A}(x) .
$$

Therefore, function π determines the degree of uncertainty.
Let us define the empty IFS, the totally uncertain IFS, and the unit IFS (see [1]) by:

$$
\begin{aligned}
O^{*} & =\{\langle x, 0,1\rangle \mid x \in E\}, \\
U^{*} & =\{\langle x, 0,0\rangle \mid x \in E\}, \\
E^{*} & =\{\langle x, 1,0\rangle \mid x \in E\} .
\end{aligned}
$$

Different relations and operations are introduced over the IFSs. Some of them are the following

$$
\begin{aligned}
& A \subset B \quad \text { iff } \quad(\forall x \in E)\left(\mu_{A}(x) \leq \mu_{B}(x) \& \nu_{A}(x) \geq \nu_{B}(x)\right), \\
& A=B \quad \text { iff } \quad(\forall x \in E)\left(\mu_{A}(x)=\mu_{B}(x) \& \nu_{A}(x)=\nu_{B}(x)\right), \\
& \bar{A}=\quad\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\}, \\
& A \cap B= \\
& A \cup B=\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
& A+B= \\
& \left.A\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
& A \cdot B \quad=\quad\left\{\left\langle x, \mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
& A @ B \quad=\quad\left\{\left\langle x, \mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x)+\nu_{B}(x)-\nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
& \left\{\left.\left\langle x, \frac{\mu_{A}(x)+\mu_{B}(x)}{2}, \frac{\nu_{A}(x)+\nu_{B}(x)}{2}\right\rangle \right\rvert\, x \in E\right\} .
\end{aligned}
$$

In [2] we introduced two new operators, defined over IFSs. They are analogous of operations "substraction" and "division" and have the forms for every two given IFSs A and B :

$$
A-B=\left\{\left\langle x, \mu_{A-B}(x), \nu_{A-B}(x)\right\rangle \mid x \in E\right\},
$$

where

$$
\mu_{A-B}(x)= \begin{cases}\frac{\mu_{A}(x)-\mu_{B}(x)}{1-\mu_{B}(x)}, & \text { if } \mu_{A}(x) \geq \mu_{B}(x) \text { and } \nu_{A}(x) \leq \nu_{B}(x) \text { and } \nu_{B}(x)>0 \\ & \text { and } \nu_{A}(x) \pi_{B}(x) \leq \pi_{A}(x) \nu_{B}(x) \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\nu_{A-B}(x)= \begin{cases}\frac{\nu_{A}(x)}{\nu_{B}(x)}, & \text { if } \mu_{A}(x) \geq \mu_{B}(x) \text { and } \nu_{A}(x) \leq \nu_{B}(x) \text { and } \nu_{B}(x)>0 \\ & \text { and } \nu_{A}(x) \pi_{B}(x) \leq \pi_{A}(x) \nu_{B}(x) \\ 1, & \text { otherwise }\end{cases}
$$

and

$$
A: B=\left\{\left\langle x, \mu_{A: B}(x), \nu_{A: B}(x)\right\rangle \mid x \in E\right\},
$$

where

$$
\mu_{A: B}(x)= \begin{cases}\frac{\mu_{A}(x)}{\mu_{B}(x)}, & \text { if } \mu_{A}(x) \geq \mu_{B}(x) \text { and } \nu_{A}(x) \leq \nu_{B}(x) \text { and } \mu_{B}(x)>0 \\ & \text { and } \frac{\mu_{A}(x)}{\mu_{B}(x)} \leq \frac{\pi_{A}(x)}{\pi_{B}(x)} \text { and } \mu_{A}(x) \pi_{B}(x) \leq \pi_{A}(x) \mu_{B}(x) \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\nu_{A: B}(x)=\left\{\begin{array}{ll}
\frac{\nu_{A}(x)-\nu_{B}(x)}{1-\nu_{B}(x)}, & \text { if } \mu_{A}(x) \geq \mu_{B}(x) \text { and } \nu_{A}(x) \leq \nu_{B}(x) \text { and } \mu_{B}(x)>0 \\
& \text { and } \mu_{A}(x) \pi_{B}(x) \leq \pi_{A}(x) \mu_{B}(x) \\
1, & \text { otherwise }
\end{array} ;\right.
$$

2 On some properties of operations "substraction" and "division"

Following [?], firstly we shall mention that in a result of each one of the two operation we obtain an IFS.

In [?] are proved the following assertions for every two IFSs A and B :
(a) $A-A=O^{*}$,
(b) $A: A=E^{*}$,
(c) $A-O^{*}=A$,
(d) $A: E^{*}=A$,
(e) $(A: B) \cdot B=A$.

The following assertions hold.
Theorem 1: For every two IFSs A and B :

$$
A: B=\left\{\left\langle x, \mu_{A: B}(x), \nu_{A: B}(x)\right\rangle \mid x \in E\right\},
$$

where

$$
\mu_{A: B}(x)= \begin{cases}\frac{\mu_{A}(x)}{\mu_{B}(x)}, & \text { if } \mu_{A}(x) \geq \mu_{B}(x) \text { and } \nu_{A}(x) \leq \nu_{B}(x) \text { and } \mu_{B}(x)>0 \\ & \text { and } \frac{\mu_{A}(x)}{\mu_{B}(x)} \leq \frac{\pi_{A}(x)}{\pi_{B}(x)} \\ & \text { and } \mu_{A}(x) \pi_{B}(x) \leq \pi_{A}(x) \mu_{B}(x)\end{cases}
$$

and

$$
\nu_{A: B}(x)= \begin{cases}\frac{\nu_{A}(x)-\nu_{B}(x)}{1-\nu_{B}(x)}, & \text { if } \mu_{A}(x) \geq \mu_{B}(x) \text { and } \nu_{A}(x) \leq \nu_{B}(x) \text { and } \mu_{B}(x)>0 \\ 1, & \text { and } \mu_{A}(x) \pi_{B}(x) \leq \pi_{A}(x) \mu_{B}(x) \\ 1, & \text { otherwise }\end{cases}
$$

Theorem 2: For every two IFSs A and B :
(e) $A-U^{*}=O^{*}$,
(f) $A: U^{*}=O^{*}$,
(g) $(A-B)+B=A$,
(i) $(A-B)-C=(A-C)-B$,
(j) $(A: B): C=(A: C): B$.

Now, we see that for the two IFSs A and B, so that $B \subset A$ and (a) for each $x \in E$

$$
\begin{aligned}
\nu_{B}(x) & >0, \\
\nu_{A}(x) \pi_{B}(x) & \leq \pi_{A}(x) \nu_{B}(x),
\end{aligned}
$$

then

$$
A-B=\left\{\left.\left\langle x, \frac{\mu_{A}(x)-\mu_{B}(x)}{1-\mu_{B}(x)}, \frac{\nu_{A}(x)}{\nu_{B}(x)}\right\rangle \right\rvert\, x \in E\right\},
$$

(b) for each $x \in E$

$$
\begin{gathered}
\mu_{B}(x)>0 \\
\mu_{A}(x) \pi_{B}(x) \leq \pi_{A}(x) \mu_{B}(x),
\end{gathered}
$$

then

$$
A: B=\left\{\left.\left\langle x, \frac{\mu_{A}(x)}{\mu_{B}(x)}, \frac{\nu_{A}(x)-\nu_{B}(x)}{1-\nu_{B}(x)}\right\rangle \right\rvert\, x \in E\right\} .
$$

Obviously

$$
\begin{aligned}
& O^{*}-U^{*}=O^{*}, \\
& O^{*}-E^{*}=O^{*}, \\
& U^{*}-O^{*}=U^{*}, \\
& U^{*}-E^{*}=O^{*}, \\
& E^{*}-O^{*}=E^{*}, \\
& E^{*}-U^{*}=O^{*}, \\
& O^{*}: U^{*}=O^{*}, \\
& O^{*}: E^{*}=O^{*}, \\
& U^{*}: O^{*}=O^{*}, \\
& U^{*}: E^{*}=O^{*}, \\
& E^{*}: O^{*}=O^{*}, \\
& E^{*}: U^{*}=O^{*},
\end{aligned}
$$

Two open problems at the moment are the following:

1. Are there relations between operations " - " and ": " from one side and opeastions " \cup " and " \cap " from other?
2. Are there other relations between operations "-" and ": " from one side and operations " + " and "." from other?
Theorem 3: For every three IFSs A, B and C :
(a) $(A @ B)-C=(A-C) @(B-C)$,
(b) $(A @ B): C=(A: C) @(B: C)$,
(c) $\overline{A-B}=\bar{A}: \bar{B}$.

Having in mind relations between operations " - " and " + " and between operations "." and ".", we can call the new operations algebraic operations.

References

[1] K. Atanassov, Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin, 1999.
[2] R. Riećan and K. Atanassov, On two operations over intuitionistic fuzzy sets. Journal of Applied Mathematics, Statistics and Informatics, Vol. 2, 2006, No. 2, 145-148.

