9th Int. Workshop on IFSs, Banská Bystrica, 8 Oct. 2013 Notes on Intuitionistic Fuzzy Sets Vol. 19, 2013, No. 2, 21–24

On an operator, mapping intuitionistic fuzzy sets into fuzzy sets

Peter Vassilev

Bioinformatics and Mathematical Modelling Department Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria e-mail: peter.vassilev@gmail.com

Abstract: In the present paper a possible way for defining a hesitancy-dependent operator mapping the class of intuitionistic fuzzy sets to the class of fuzzy sets is proposed. It is proved that the so-defined operator preserves ordering (in the sense of inclusion).

Keywords: Operator, Fuzzy set, Intuitionistic fuzzy set, hesitancy function.

AMS Classification: 03E72.

1 Introduction

The Fuzzy set theory was introduced by Zadeh (see [7]) as an appropriate mathematical instrument for the description of uncertainty observed in nature (see e.g. [8], [5]). Later the notion intuitionistic fuzzy set introduced by K. Atanassov (see [1]). Sometimes, these sets are also referred to as Atanassov sets [4].

We will quickly remind some basic definitions and notions.

Let X be a universe set, $A \subset X$. Then a mapping $\mu_A : X \to [0, 1]$ is called membership of the element x from X to the set A. Thus a fuzzy set A^* is defined as the set of ordered couples:

$$A^* = \{ \langle x, \mu_A(x) \rangle | x \in X \}$$

An intuitionistic fuzzy set is defined with the help of two mappings $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ such that for all $x \in X$,

$$\mu_A(x) + \nu_A(x) \le 1 \tag{1}$$

Definition 1. Following [1], we call the set of ordered triples

$$A^* \stackrel{\text{def}}{=} \{x, \mu_A(x), \nu_A(x) | x \in E\}$$

an intuitionistic fuzzy set (IFS) and the mapping π_A , which is given for all $x \in X$ by

$$\pi_A(x) \stackrel{\text{def}}{=} 1 - \mu_A(x) - \nu_A(x), \tag{2}$$

a hesitancy function.

When

 $\pi_A \equiv 0,$

the intuitionistic fuzzy set coincides with a fuzzy set.

Let us further denote the class of all intuitionistic fuzzy sets defined over the universe X by IFS(X). For the class of all fuzzy sets defined over X we will use the denotation FS(X).

We will require the following fact and definitions (valid for all $x \in X$):

$$\nu_A(x) = 1 - \pi_A(x) - \mu_A(x).$$
(3)

Definition 2 (cf. [2, p.17, Eq. (2.1)]). Let $A, B \in IFS(X)$. We say that A is included in B (or A is a subset of B) if and only if for all $x \in X$ it is fulfilled:

$$\mu_A(x) \le \mu_B(x)
1 - \pi_A(x) - \mu_A(x) \ge 1 - \pi_B(x) - \mu_B(x)$$
(4)

and we denote that by

 $A \subseteq B$.

Definition 3 (cf. [6, p.28, Eq. (1.17)]). Let $A, B \in FS(X)$. We say that A is included in B (or A is a subset of B) if and only if for all $x \in X$ it is fulfilled:

$$\mu_A(x) \le \mu_B(x) \tag{5}$$

and we denote that by

 $A \subseteq B$.

2 The proposed operator

Our purpose here is to define an operator $T : IFS(X) \to FS(X)$, such that for any $A, B \in IFS(X)$ for which $A \subset B$, it produces $T(A) \subset T(B)$. Also, if $A \in FS(X)$ we would like to have T(A) = A, i.e. it acts as identity operator.

Definition 4. Let $A \in IFS(X)$, then we can define T as follows

$$T(A) \stackrel{\text{def}}{=} \{ \langle x, \mu^*(A) \rangle | x \in X \}$$

where

$$\mu_A^*(x) = \begin{cases} 0 & \text{if } \pi_A(x) = 1\\ \frac{\mu_A(x)}{1 - \pi_A(x)} & \text{otherwise} \end{cases}$$
(6)

First we will check that this definition is correct, i.e. that T(A) is indeed fuzzy set. In order to establish that we have to verify that for all $x \in X$

$$\mu_A^*(x) \le 1.$$

But we have (see e.g. (3))

$$\mu_A(x) \le 1 - \pi_A(x)$$

Hence if $\pi_A(x) \neq 1$, we have:

$$\mu_A^*(x) = \frac{\mu_A(x)}{1 - \pi_A(x)} \le 1.$$

Finally, if $\pi_A(x) = 1$, then $\mu_A^*(x) = \mu_A(x) = 0$. Therefore, T(A) is indeed a fuzzy set.

Theorem 1. For any $A, B \in IFS(X)$ such that $A \subseteq B$ we have $T(A) \subseteq T(B)$.

Proof. Without loss of generality we may assume $\pi_A(x) > 0$ and $\pi_B(x) > 0$. From Definition 2 we have:

$$\mu_A(x) \le \mu_B(x); \ 1 - \pi_A(x) - \mu_A(x) \ge 1 - \pi_B(x) - \mu_B(x)$$

We want to show that

$$\mu_A^*(x) \le \mu_B^*(x)$$

i.e.

$$\frac{\mu_A(x)}{1 - \pi_A(x)} \le \frac{\mu_B(x)}{1 - \pi_B(x)}$$
(7)

Let us first consider the case when $\pi_A(x) \leq \pi_B(x)$.

This is equivalent to $1 - \pi_A(x) \ge 1 - \pi_B(x)$. Then (7) would be equivalent to

$$(1 - \pi_B(x))\mu_A(x) \le (1 - \pi_A(x))\mu_B(x)$$

which is obviously true.

Hence it remains to check what happens when $\pi_A(x) > \pi_B(x)$.

This means that:

$$1 - \pi_A(x) < 1 - \pi_B(x).$$

On the other hand from (4) we obtain

$$\varepsilon(x) = \mu_B(x) - \mu_A(x) \ge \pi_A(x) - \pi_B(x) = \delta(x).$$

Again we rewrite (7) as

$$(1 - \pi_B(x))\mu_A(x) \le (1 - \pi_A(x))\mu_B(x)$$

which is equivalent to:

$$\mu_B(x) - \mu_A(x) + \pi_B(x)\mu_A(x) \ge \pi_A(x)\mu_B(x)$$

which may be rewritten as

$$\varepsilon(x) + \pi_B(x)\mu_A(x) \ge (\pi_B(x) + \delta(x))(\mu_A(x) + \varepsilon(x))$$

which after simplification is reduced to:

$$\varepsilon(x)(1-\pi_B(x)) \ge \delta(x)\mu_B(x)$$

But the last is obviously true since:

$$\varepsilon(x)(1 - \pi_B(x)) \ge \delta(x)(1 - \pi_B(x)) \ge \delta(x)\mu_B(x)$$

Thus for all $x \in X$, we have $\mu_A^*(x) \le \mu_B^*(x)$, which completes the proof.

3 Conclusion

Here, we have presented a new operator which transforms an intuitionistic fuzzy set into a fuzzy set, while preserving the existing inclusions. It is noteworthy that this operator is different from the operator for de-i-fuzzification defined in [3].

References

- [1] Atanassov, K. *Intuitionistic Fuzzy Sets: Theory and Applications*, Springer Physica-Verlag, Heidelberg, 1999.
- [2] Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer Physica-Verlag, Berlin, 2012.
- [3] Ban, A., J. Kacprzyk, K. Atanassov. On de-I-fuzzification of intuitionistic fuzzy sets. *Comptes Rendus de l'Academie bulgare des Sciences*, Vol. 61, 2008, No. 12, 1535-1540.
- [4] Grzegorzewski, P. E. Mrowka. Some notes on (Atanassov's) intuitionistic fuzzy sets. *Fuzzy Sets and Systems*, Vol. 156, 2005, 492–495.
- [5] Kaufmann A. Theory of expertons and fuzzy logic, *Fuzzy Sets and Systems*, Vol. 28, 1988, No. 3, 295–304.
- [6] Klir, G, B. Yuan. *Fuzzy Sets and Fuzzy Logic: Theory and Applications*, Prentice Hail, New Jersey, 1995.
- [7] Zadeh, L. Fuzzy sets. Information and Control, Vol. 8, 1965, 338–353.
- [8] Zadeh, L. *The concept of a linguistic variable and its application to approximate reasoning*, American Elsevier Publ. Co., New York, 1973.