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1 Introduction

The Fuzzy set theory was introduced by Zadeh (see [7]) as an appropriate mathematical instru-
ment for the description of uncertainty observed in nature (see e.g. [8], [5]). Later the notion
intuitionistic fuzzy set introduced by K. Atanassov (see [1]). Sometimes, these sets are also re-
ferred to as Atanassov sets [4].

We will quickly remind some basic definitions and notions.
Let X be a universe set , A ⊂ X. Then a mapping µA : X → [0, 1] is called membership of

the element x from X to the set A. Thus a fuzzy set A∗ is defined as the set of ordered couples:

A∗ = {〈x, µA(x)〉|x ∈ X}

An intuitionistic fuzzy set is defined with the help of two mappings µA : X → [0, 1] and
νA : X → [0, 1] such that for all x ∈ X,

µA(x) + νA(x) ≤ 1 (1)
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Definition 1. Following [1], we call the set of ordered triples

A∗ def
= {x, µA(x), νA(x)|x ∈ E}

an intuitionistic fuzzy set (IFS) and the mapping πA, which is given for all x ∈ X by

πA(x)
def
= 1− µA(x)− νA(x), (2)

a hesitancy function.

When
πA ≡ 0,

the intuitionistic fuzzy set coincides with a fuzzy set.
Let us further denote the class of all intuitionistic fuzzy sets defined over the universe X by

IFS(X). For the class of all fuzzy sets defined over X we will use the denotation FS(X).

We will require the following fact and definitions (valid for all x ∈ X):

νA(x) = 1− πA(x)− µA(x). (3)

Definition 2 (cf. [2, p.17, Eq. (2.1)]). Let A,B ∈ IFS(X). We say that A is included in B (or A
is a subset of B) if and only if for all x ∈ X it is fulfilled:

µA(x) ≤ µB(x)

1− πA(x)− µA(x) ≥ 1− πB(x)− µB(x)
(4)

and we denote that by
A ⊆ B.

Definition 3 (cf. [6, p.28, Eq. (1.17)]). Let A,B ∈ FS(X). We say that A is included in B (or A
is a subset of B) if and only if for all x ∈ X it is fulfilled:

µA(x) ≤ µB(x) (5)

and we denote that by
A ⊆ B.

2 The proposed operator

Our purpose here is to define an operator T : IFS(X) → FS(X), such that for any A,B ∈
IFS(X) for which A ⊂ B, it produces T (A) ⊂ T (B). Also, if A ∈ FS(X) we would like to
have T (A) = A, i.e. it acts as identity operator.

Definition 4. Let A ∈ IFS(X), then we can define T as follows

T (A)
def
= {〈x, µ∗(A)〉|x ∈ X},

where

µ∗
A(x) =

0 if πA(x) = 1
µA(x)

1−πA(x)
otherwise

(6)

22



First we will check that this definition is correct, i.e. that T (A) is indeed fuzzy set. In order
to establish that we have to verify that for all x ∈ X

µ∗
A(x) ≤ 1.

But we have (see e.g. (3))
µA(x) ≤ 1− πA(x)

Hence if πA(x) 6= 1, we have:

µ∗
A(x) =

µA(x)

1− πA(x)
≤ 1.

Finally, if πA(x) = 1, then µ∗
A(x) = µA(x) = 0. Therefore, T (A) is indeed a fuzzy set.

Theorem 1. For any A,B ∈ IFS(X) such that A ⊆ B we have T (A) ⊆ T (B).

Proof. Without loss of generality we may assume πA(x) > 0 and πB(x) > 0. From Definition 2
we have:

µA(x) ≤ µB(x); 1− πA(x)− µA(x) ≥ 1− πB(x)− µB(x)

We want to show that
µ∗
A(x) ≤ µ∗

B(x)

i.e.
µA(x)

1− πA(x)
≤ µB(x)

1− πB(x)
(7)

Let us first consider the case when πA(x) ≤ πB(x).

This is equivalent to 1− πA(x) ≥ 1− πB(x). Then (7) would be equivalent to

(1− πB(x))µA(x) ≤ (1− πA(x))µB(x)

which is obviously true.
Hence it remains to check what happens when πA(x) > πB(x).

This means that:
1− πA(x) < 1− πB(x).

On the other hand from (4) we obtain

ε(x) = µB(x)− µA(x) ≥ πA(x)− πB(x) = δ(x).

Again we rewrite (7) as

(1− πB(x))µA(x) ≤ (1− πA(x))µB(x)

which is equivalent to:

µB(x)− µA(x) + πB(x)µA(x) ≥ πA(x)µB(x)
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which may be rewritten as

ε(x) + πB(x)µA(x) ≥ (πB(x) + δ(x))(µA(x) + ε(x))

which after simplification is reduced to:

ε(x)(1− πB(x)) ≥ δ(x)µB(x)

But the last is obviously true since:

ε(x)(1− πB(x)) ≥ δ(x)(1− πB(x)) ≥ δ(x)µB(x).

Thus for all x ∈ X, we have µ∗
A(x) ≤ µ∗

B(x), which completes the proof.

3 Conclusion

Here, we have presented a new operator which transforms an intuitionistic fuzzy set into a fuzzy
set, while preserving the existing inclusions. It is noteworthy that this operator is different from
the operator for de-i-fuzzification defined in [3].
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