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Abstract: The research presented in this paper is motivated by possibilities of using fuzzy
equivalence relations to classify the data into the specific classes. We try to improve these results
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1 Introduction

Classification of various data, structures or objects is one of the essential problems in number of
different research fields. The research presented in this paper is motivated by possibilities of using
fuzzy equivalence relations to classify the data into the specific classes. We use the properties
of intuitionistic fuzzy relations and we apply them in order to construct the intuitionistic fuzzy
equivalence relations on real data. During construction of such relations, we encountered some
problems, which are mentioned in the following parts of this paper.
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2 Preliminaries

Fuzzy sets were introduced by professor Lotfi A. Zadeh in 1965 [21]. Later as a natural extension
of fuzzy sets, intuitionistic fuzzy sets (shortly IFSs) were introduced by Krassimir Atanassov
[2]. Since then, many new properties and applications of this mathematical structures have
been designed and implemented. In this section we define the mathematical functions and their
properties which are used in this paper.

2.1 Fuzzy sets

Definition 2.1. Let X be the universe. A set A is called a fuzzy set, if it holds

A = {〈x, µA(x)〉|x ∈ X},

where µA : X → [0, 1]. Function µA is called the membership function of fuzzy set A.

Definition 2.2. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be the finite sets. Then fuzzy
relation R between the sets X and Y is defined by the fuzzy relation matrix

R =

µR(x1, y1) µR(x1, y2) . . . µR(x1, ym)
...

... . . . ...
µR(xn, y1) µR(xn, y2) . . . µR(xn, ym)

 .

Then µR : X × Y → [0, 1].

Definition 2.3. Let X, Y, Z be finite sets. Suppose that R is a fuzzy relation on the Cartesian
product X × Y , S is a fuzzy relation on the Cartesian product Y × Z and T is a fuzzy relation
on the Cartesian product X × Z. Then the max−min composition of fuzzy relations R and S is
defined by the following way

µT (x, z) = sup
y∈Y

min(µR(x, y), µS(y, z)).

We will shortly write
T = R ◦ S.

Remark 1. There are special operations defined on fuzzy sets—t-norms and t-conorms, which
are used to define various types of intersections and unions on fuzzy sets. The most used t-norm
is minimum t-norm. By using this t-norm the intersection of two fuzzy sets is also the fuzzy set,
which is equal to the minimum of the membership functions of input fuzzy sets at each point.
In addition, t-norms and t-conorms are used to define various types of compositions of fuzzy
relations (see for example [16]).

Remark 2. In this paper we will use one more type of composition of fuzzy relations, so called
min−max composition. Such composition P is defined for fuzzy relations R and S as follows

µP (x, z) = inf
y∈Y

max(µR(x, y), µS(y, z)).

We will shortly write
P = R � S.
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Definition 2.4. Let X = {x1, x2, . . . , xn} be a finite set and let R be the fuzzy relation on
Cartesian product X ×X . If fuzzy relation R satisfied the properties of

• reflexivity, i.e., µR(xi, xi) = 1 holds for each xi ∈ X ,

• symmetry, i.e., µR(xi, xj) = µR(xj, xi) holds for each xi, xj ∈ X ,

• transitivity, i.e., min[µR(xi, xj), µR(xj, xk)] ≤ µR(xi, xk) holds for each xi, xj, kk ∈ X ,

thenR is called fuzzy equivalence relation. If fuzzy relationR satisfied the properties of reflexivity
and symmetry, then R is called fuzzy tolerance relation.

Remark 3. In general, to determine transitivity, any t-norm can be used, and therefore the term
t-transitivity is generally used.

While verification of the first two conditions is simple, further verification of the third condition
is not. If for some fuzzy relation reflexivity holds, then all diagonal elements of its matrix are
equal to 1. If some fuzzy relation is symmetric, then for its matrix R = RT holds, where RT

is a transposition of the matrix R. If we have fuzzy tolerance relation and we need to verify
the transitivity of this relation, we should use properties resulting from the following Theorem
(see [16]):

Theorem 1. Let X = {x1, x2, . . . , xn} be a finite set, let R be the fuzzy tolerance relation on
Cartesian product X ×X and let ◦ represent the max−min composition of two fuzzy relations.
Let us denote R2 = R ◦R and Rk = Rk−1 ◦R. Then if

Rk = Rk−1

then the fuzzy relation Rk−1 is the fuzzy equivalence relation.

Remark 4. LetR be the fuzzy tolerance relation on Cartesian productX×X . From the previous
Theorem it follows

• If R2 = R, then relation R satisfied the property of transitivity and therefore R is the fuzzy
equivalence relation.

• If R2 6= R, then relation R does not satisfy the property of transitivity. But if we need to
generate the fuzzy equivalence relation from the relation R, we should use the max−min

composition of this relation with itself. After the finite number of steps we obtain the fuzzy
equivalence relation. In addition, it was proved that the number of steps is always smaller
or at most equal to the dimension n of the matrix R.

One of the ways to use the fuzzy equivalence relations is to use them for the classification of
the data. From mathematical point of view, classification is equivalent to the decomposition of
the set. For this purpose we define some more structures.

Definition 2.5. Let X be a set and let A1, A2, . . . Al be the system of crisp nonempty sets. Then
the system of sets A1, A2, . . . Al is called the decomposition of a set X , if the following properties
are satisfied:
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• A1 ∪ A2 ∪ . . . ∪ Al = X ,

• Ai ∩ Aj = ∅, i, j ∈ {1, 2, . . . , l}, i 6= j.

There is the relationship between the relation of equivalence and the decomposition of a set,
as mentioned in following Theorem (see [16]).

Theorem 2. Let X be a finite set and let R be the equivalence relation defined on X . Each
decomposition of the setX defines the equivalence relation and on the other side, each equivalence
relation defines the decomposition of the set X .

Definition 2.6. Let X be a set and let α ∈ [0, 1]. Then the α-cut of fuzzy set A is defined as the
set with the following property:

A(α) = {x ∈ X, µA(x) ≥ α}.

In the next example we present decomposition of the set X with the use of fuzzy equivalence
relation.

Example 1. Let X = {x1, x2, x3, x4} be a set and let R be the fuzzy equivalence relation defined
on X by the following matrix

R =


1 0.3 0.9 0.9

0.3 1 0.3 0.3

0.9 0.3 1 1

0.9 0.3 1 1

 .

Let α = 0.9. Then we could construct binary matrix R(0.9) from matrix R by using the value α in
the following way

R(0.9) =


1 0 1 1

0 1 0 0

1 0 1 1

1 0 1 1

 .

From the binary matrix R(0.9) we get the following decomposition of the set X

A(0.9) = {{x1, x3, x4}, {x2}}.

By choosing different values of α we can get different decompositions of the set X . In this
example we get three different decompositions of the set X

A(1) = {{x1}, {x2}, {x3, x4}}, A(0.9) = {{x2}, {x1, x3, x4}}, A(0.3) = {{x1, x2, x3, x4}}.

These decompositions of the setX could be shown by dendrogram (see Figure 1). It is well know,
that by choosing different values of α, one could get different number of sets, which represent the
clusters of classifications. In this paper we will use this idea.
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Figure 1. Dendrogram related to the Example 1

2.2 Intuitionistic fuzzy sets

Remark 5. In the rest of the paper the properties of intuitionistic fuzzy set will be used. Therefore
in some of the following parts of the paper notations similar to the Section 2.1 will be used.

Definition 2.7. Let X be the universe. An intuitionistic fuzzy set A is a set

A = {〈x, µA(x), νA(x)〉|x ∈ X}

of the functions µA : X → [0, 1], νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1.

Function µA is called the membership function and function νA is called the non-membership
function. F denotes the family of all intuitionistic fuzzy sets (shortly IFSs).

Definition 2.8. Let A = (µA, νA), B = (µB, νB) be intuitionistic fuzzy sets. Then it holds

A = B ⇐⇒ (µA = µB) & (νA = νB),

A ≤ B ⇐⇒ (µA ≤ µB) & (νA ≥ νB),

A
∧

B = ((µA ∧ µB), (νA ∨ νB)),

A
∨

B = ((µA ∨ µB), (νA ∧ νB)).

In addition
(0, 1) ≤ A ≤ (1, 0),

which means, that element (0, 1) is the smallest element and element (1, 0) is the greatest element
of the set F .

Remark 6. In this text operations ∧ and ∨ represent operations min and max respectively. In
general any t-norm and t-conorm could be used instead of these operations.

Definition 2.9. Let R = (ri,j)n×m be a matrix. If all elements of matrix R belong to F , then R is
called an intuitionistic fuzzy matrix.
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It is obvious, that intuitionistic fuzzy matrix R represents the intuitionistic fuzzy relation
between two sets, for example X and Y . In the following text we will work with the intuitionistic
fuzzy relations defined on the Cartesian product X ×X exclusively.

Definition 2.10. Let X = {x1, x2, . . . , xn} be a finite set. An intuitionistic fuzzy relation R on X
is called

• reflexive, iff R(xi, xi) = (1, 0) holds for each xi ∈ X ,

• symmetric, iff R(xi, xj) = R(xj, xi) holds for each xi, xj ∈ X ,

• transitive, iff sup
xj∈X

min[R(xi, xj), R(xj, xk)] ≤ R(xi, xk) holds for each xi, xj, kk ∈ X .

Definition 2.11. Let X be a finite set and let R be the intuitionistic fuzzy relation on X . If
intuitionistic fuzzy relation R is reflexive, symmetric and transitive, then R is called intuitionistic
fuzzy equivalence relation. If intuitionistic fuzzy relation R satisfies the properties of reflexivity
and symmetry, then R is called intuitionistic fuzzy tolerance relation.

Definition 2.12. The intuitionistic fuzzy relation matrix R could be written using two matrices
R = [Rµ, Rν ]. Then the first matrixRµ contains the membership degrees of elements of Cartesian
product X × X and the second matrix Rν contains the non-membership degrees of elements of
Cartesian product X ×X .

Definition 2.13. Let X be a finite set and let R = [Rµ, Rν ], S = [Sµ, Sν ] and T = [Tµ, Tν ] be the
intuitionistic fuzzy relations onX . Let ◦ represent the max−min composition and let � represent
the min−max composition of two fuzzy relations. Then the max−min composition (denoted by
?) of intuitionistic fuzzy relations R and S is defined in the following way

T = R ? S = [Rµ ◦ Sµ, Rν � Sν ].

Theorem 3. Let X be a finite set, let R be the intuitionistic fuzzy tolerance relation on X and let
? represent the max−min composition of two intuitionistic fuzzy relations. Denote R2 = R ?R

and Rk = Rk−1 ? R. Then if
Rk = Rk−1

then the intuitionistic fuzzy relation Rk−1 is the intuitionistic fuzzy equivalence relation.

Similar conclusion as in Remark 4 holds for this Theorem as well.

Definition 2.14. (see [2]) Let X be a finite set and let (α, β) ∈ F . Then (α, β)-cut of the
intuitionistic fuzzy set A is given by the following formula

A(α,β) = {x ∈ X,µA(x) ≥ α, νA(x) ≤ β}.

Definition 2.15. (see [6]) Let X be a finite set and let R be the intuitionistic fuzzy equivalence
relation on X . Let a be any element of X . Then the IFS defined by

aR = {〈x, (aµR)(x), (aνR)(x)〉|x ∈ X}

where
(aµR)(x) = µR(a, x) and (aνR)(x) = νR(a, x)

for each x ∈ X , is called an intuitionistic fuzzy equivalence class of a with respect to R.
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Theorem 4. (see [6]) LetX be a finite set and letR be the intuitionistic fuzzy equivalence relation
on X . Let a be any element of X . Then for any (α, β) ∈ F the IFS defined by

R(α,β)(a) = [a]

is the equivalence class of a with respect to the intuitionistic fuzzy equivalence relation R(α,β).

Theorem 5. (see [6]) LetX be a finite set and letR be the intuitionistic fuzzy equivalence relation
on X . Let a, b be any element of X . [a] = [b] denotes the equivalence classes of a and b with
respect to the intuitionistic fuzzy equivalence relation R(α,β). Then

[a] = [b] iff (a, b) ∈ R(α,β).

3 Processing of the data

Based on the properties mentioned in the previous section, it is clear that intuitionistic fuzzy sets
could be used to classify real data. At the same time several questions arise. For example, do
we get different results by using fuzzy relations and intuitionistic fuzzy relations? If we have
an intuitionistic fuzzy tolerance relation R = [Rµ, Rν ] based on known data and we want to
create the intuitionistic fuzzy equivalence relation with the use of max−min composition ? of
relation R with itself, is the number of required compositions of the matrix Rµ with itself and the
number of required compositions of the matrix Rν with itself, the same number? For answering
these questions, author decided to use the data from their previous works. In the first part of
this section, part of data from tire tread image database are processed. In the second part of the
presented paper, the data from InterCriteria Analysis will be processed. We also offer discussion
related to obtained results.

3.1 Processing of the data from tire tread image database

There are many real word problems, in which the classification of the objects into some specific
classes is needed. This type of classification problem was used in the building of the database
of tire tread prints which contains images of tire treads downloaded from various web pages
([18]). This set is comprised of images with different positions of tires. Therefore it is important
to process the images in such way that the best possible position of tire tread sample will be
obtained. On the behalf of this idea there was created number of methods (see [11–13, 19]) of
classifying images into the chosen number of classes. In this part of the paper we use the results
of classification of the images on the basis of intuitionistic fuzzy sets and we apply the conditions
of intuitionistic fuzzy equivalence relations to obtain new results.

For pre-processing of the images we developed the specific algorithm (see [11]). After using
this algorithm each image is represented by 16 coordinate vector. To calculate the value of
membership and non-membership function of each coordinate of the image vector we used the
procedure that was described in the paper [9]. Now each image is described by two 16 coordinate
vectors (vector with its membership degrees and vector with its non-membership degrees).

312



We need to classify images into seven classes. For each of these seven classes we choose so
called templates. Template images represent their classes. Three images from each class were
selected as the templates. Therefore, we used 21 template images. To build the database of
templates we used the same approach as mentioned in the paper [11]. The idea is to take any
new image from the tire tread database and determine the intuitionistic fuzzy equivalence relation
between this image and the template database. Then by using (α, β)-cuts of the created relation,
we classify new image into the specific class.

During the processing of the data we realized that the greatest problem of this idea is method
of calculation of the intuitionistic fuzzy relation elements. To describe the different types of
intuitionistic fuzzy relation element construction and to discuss the specific problems related to
these approaches, one of the images from the tire image database was randomly chosen. In this
part of the paper we present some approaches that we used.

• In the paper [16] the way of calculation of the elements of fuzzy relation from the data
represented by vectors was presented. Author used the cosine based similarity measure to
calculate the similarity between each two vectors. The created matrix represents the fuzzy
relation, which is reflexive and symmetric, but not transitive. We wanted to use the similar
approach. We took 22 vectors which describe the membership part of all 22 images and we
created the matrix of type 22×22 with the use of cosine based similarity measure. This way
we obtained the fuzzy relation Rµ. In the next step we took 22 vectors which describe the
non-membership part of all 22 images and we create the matrix of type 22× 22 wit the use
of cosine based similarity measure. Then we compute the elements of the fuzzy relationRν

as 1−“calculated values”. It is obvious, that the created relationR = [Rµ, Rν ] is reflexive
and symmetric. To verify the obtained results, we compute matrix R̄ = Rµ ⊕ Rν where
⊕ represents the classical matrix summation and we found out, that some elements of the
matrix R̄ are greater than 1. Therefore created matrix R = [Rµ, Rν ] does not represent the
intuitionistic fuzzy relation.

• In the next step we try to use idea of cosine based similarity measure in another way. Since
the formula sin2(x)+cos2(x) = 1 is well known, we modified the elements of relations Rµ

and Rν from previous point to satisfy the mentioned formula. We could conclude that the
results similar to the previous point were obtained. The verification matrix R̄ = Rµ ⊕ Rν

contains some elements greater then 1.

To construct the intuitionistic fuzzy relations between the image vectors, we decided to use
another type of (fuzzy) similarity and distance measures. Some results are listed below.

If we take 22 vectors (the membership part vectors and in the next step the non-membership
part vectors) and as an example we compute the pairwise Euclidean distance between them, we
get the matrix which also contains the values greater then 1. Therefore we need to normalize
these elements into the interval [0, 1]. After the normalization we need to modify one of the
matrices R̂µ, R̂ν into the correct form. For example, if we use some of the similarity measures,
then we get R̂µ(xi, xi) = 1 and also R̂ν(xi, xi) = 1. Therefore we need to modify the values
of elements of non-membership matrix. In this situation we used the formulas Rµ = R̂µ and
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Rν = 1− R̂ν . By using this procedure we obtain the matrices for which holds that each element
of the matrix R̄ = Rµ ⊕Rν is equal to 1.

Then we compose matrix Rµ with itself and also matrix Rν with itself. When using various
images from described dataset as inputs, the number of compositions of the relation Rµ with
itself and the number of compositions of the relation Rν with itself is equal. Furthermore, output
from created equivalence relations R̄µ and R̄ν were equivalent dendrograms. Therefore it is not
necessary to use intuitionistic fuzzy relations, since they are equal to fuzzy relations.

3.2 Processing of the data from InterCriteria Analysis

InterCriteria Analysis (shortly ICA) is a mathematical method that has been developed in Bulgaria
in 2014 (see [4]) with the aim to support decision making in multiobject multicriteria problems,
using the paradigms of intuitionistic fuzzy sets and index matrices. In the original formulation
of the problem, part of the criteria in an industrial multicriteria decision making problem exhibit
high complexity and cost of the measurement. In [4] authors designed and implemented a method
which identifies existence of strong enough correlations between cost unfavorable criteria and the
rest of the criteria with high enough precision. In ICA, the terminology “positive / negative
consonance” or “dissonance” is used.

As input data of ICA a two-dimensional table with the measurements or evaluations of m
objects against n criteria is required. This method returns an n × n matrix with intuitionistic
fuzzy pairs, defining the degrees of consonance between each pair of criteria. The essence of the
method is in the exhaustive pairwise comparison of the values of the measurements of all objects
in the set against pairs of criteria, with all possible pairs being traversed, while counters being
maintained for the percentage of the cases when the relations between the pairs of evaluations
have been ‘greater than’, ‘less than’ or ‘equal’. In these days ICA is used not just for comparison
of criteria, but also for optimization of parameters (see [1,8,15,17]) and it was applied in number
of areas of life (see [7, 10, 14, 20, 22]).

In this part of the paper the data, which were presented in [5] are used. By using ICA, the
relationR = [Rµ, Rν ] was obtained. The computed matricesRµ andRν are presented on Figure 2
and Figure 3. This example was chosen on the basis of small number of criteria – 12 criteria were
used, while there were some elements of the relation R for which the sum of membership and
non-membership degree is less then 1.
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Figure 2. Membership part of intuitionistic fuzzy relation

Figure 3. Non-membership part of intuitionistic fuzzy relation

The matrices Rµ and Rν represent the intuitionistic fuzzy relations, which are reflexive and
symmetric. Therefore in the first step we compose these matrices with themselves to find out if
they are transitive. The result was that these matrices are not transitive. To satisfy the equality
Rk
µ = Rk−1

µ six max−min compositions of the matrix Rµ with itself were needed. Similarly, to
satisfy the equality Rk

ν = Rk−1
ν six min−max compositions of the matrix Rν with itself were

needed.
In the next step we compare the dendrograms of the equivalence relations Rk−1

µ and Rk−1
ν .

The results can be seen on the Figure 4. As it follows from this Figure, the dendrograms are not
the same.
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Figure 4. Dendrograms of membership and non-membership part of intuitionistic fuzzy relation

Depending on the problem which is being solved, one could deduce interesting conclusions.
When classifying data with the use of fuzzy equivalence relation there is possibility of classifying
an object to more then one class with the same degree. In such case, one could use intuitionistic
fuzzy equivalence relation, since the non-membership part of this relation could help with the
classification of the object to one specific class.

The paper [5] posed the question about choosing the criteria triples, which are in the strongest
consonance. From the membership part of intuitionistic fuzzy equivalence relation (Figure 4,
left) it is obvious that the criteria 11 and 12 are in the strongest consonance. The nearest criteria
to the criteria 11 and 12 are criteria 1, 9 and 6. From the non-membership part of intuitionistic
fuzzy equivalence relation (Figure 4, right) it is also obvious, that the criteria 11 and 12 are in
the strongest consonance. The nearest criteria to the criteria 11 and 12 are criteria 4 and 5 and
then criteria 1, 6, 7 and 9. From this observation we could conclude that the non-membership
part of intuitionistic fuzzy equivalence relation could improve the evaluation of mutual relations
of considered criteria.

4 Conclusions

In this paper, the properties of intuitionistic fuzzy equivalence relations were applied on real
data. We pointed out the problems that may occur when processing such data with the use of
intuitionistic fuzzy relations. We present the situation where there is not any difference between
use of fuzzy relations and intuitionistic fuzzy relations. We also show an example, where the
obtained results are different.

In future work, we would like to pre-process the data of tire tread images in different ways,
so that we could use the advantages of intuitionistic fuzzy relations on these data. We would like
to look deeper into the relationship between triples of criteria which follow from the obtained
dendrograms (Figure 4).
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[12] Michalı́ková, A. (2019). Classification of images by using distance functions defined on
intuitionistic fuzzy sets. Advances and New Developments in Fuzzy Logic and Technology.
IWIFSGN 2019. Advances in Intelligent Systems and Computing, Vol. 1308, 66–74.
Springer, Cham.
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Applied Natural Science 2015, Jasná; Trnava (30.09.2015–02.10.2015), UCM, 173.

[20] Vankova, D., Sotirova, E., & Bureva, V. (2015). An application of the InterCriteria Analysis
approach to health-related quality of life. Notes on Intuitionistic Fuzzy Sets, 21(5), 40–48.

[21] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

[22] Zaharieva, B., Doukovska, L., Ribagin, S., Michalı́ková, A., & Radeva, I. (2017).
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