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REFUTABILITY OF PHYSICAL THEORIES: A NEW APPROACH 1

jA. Polikarovj and K. Atanassov

x1. The problem

The problem concerns the empirical test of physical theories. Finding con¯rmations of
consequences (especially predictions) of the theory is a widely accepted technique among
working physicists. This issue is treated by Carnap [1] whose views are known as con¯r-
mationism.
In contrast to con¯rmationism and having in mind the supplanting of classical dynamics

and theory of gravity by the relativity theory, Popper developed a view known as falsi¯ca-
tionism about refutability as the only reliable procedure for empirical veri¯cation of physical
theories [2].
The opinion has been established for a long time that there is an asymmetry between the

procedures of corraboration and refutation in the sense that the latter is stronger. This is
also a subject of discussion within the framework of the general criticism of falsi¯cationism.
Notwitstanding the so far existing discussion on the issue, a special attention should

be paid to the Duhem's thesis [3]. Considering a physical theory a collection of state-
ments (hypotheses) allows to relate the case of disagreement with empirical data to one
or another individual hypothesis rather than to the theory as a whole. This thesis reveals
possibilities for modifying some of the theory's integral constituents in order to eliminate
the disagreement with the data.
In symbols, this can be written as

(a) T1 ´ ((A ¾ C)&:C) ¾ :A);
(b) T2 ´ ((A&B ¾ C)&:C&B) ¾ :A;
(c) T3 ´ ((A&B ¾ C)&:C) ¾ (:A _ :B):
The case of replacement of one or more statements (premises) with their opposite is

examined in [4].

x2. A new approach

The above considerations could be generalized (extended) by representing the propositions
as fuzzy ones within the framework of intuitionistic fuzzy logic [5,6] and accepting fuzzy
values instead of truth based on complementing each other values of refutation and corrab-
oration. This can be represented as follows.
To each proposition (see, e.g., [7]) we can assign its truth value: truth { denoted by 1,

or falsity { 0. In the case of fuzzy logic this truth value is a real number in the interval [0; 1]
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and may be called \truth degree" of a particular proposition. Here we add one more value
{ \falsity degree" { which will be in the interval [0; 1] as well. Thus two real numbers, ¹(p)
and º(p), are assigned to the proposition p with the following constraint to hold:

¹(p) + º(p) · 1:

Let this assignment be provided by an evaluation function V de¯ned over a set of
propositions S in such a way that:

V (p) = h¹(p); º(p)i:

Hence the function V : S ! [0; 1] £ [0; 1] gives the truth and falsity degrees of all
propositions in S.
When the values V (p) and V (q) of the propositions p and q are known, the evaluation

function V can be extended also for the operations \&", \_" through the de¯nition :

V (:p) = hº(p); ¹(p)i;
V (p&q) = hmin(¹(p); ¹(q));max(º(p); º(q))i;
V (p _ q) = hmax(¹(p); ¹(q));min(º(p); º(q))i;
V (p ¾ q) = hmax(º(p); ¹(q));min(¹(p); º(q))i;

It will be convenient to de¯ne for the propositions p; q 2 S:

:V (p) = V (:p);
V (p) ^ V (q) = V (p&q);
V (p) t V (q) = V (p _ q);
V (p)! V (q) = V (p ¾ q):

For the needs of the discussion below we shall de¯ne the notion of tautology and of
intuitionistic fuzzy tautology (IFT) through:

\A is a tautology" iff V (A) = h1; 0i,
\A is an IFT" iff if V (A) = ha; bi, then a ¸ b.

The following assertions are valid.
THEOREM: For every three propositional forms A;B and C:
(a) ((A ¾ C)&:C) ¾ :A);
(b) ((A&B ¾ C)&:C&B) ¾ :A;
(c) ((A&B ¾ C)&:C) ¾ (:A _ :B)
are IFTs.
Proof: Let V (A) =< ¹A; ºA >; V (B) =< ¹B; ºB >; V (C) =< ¹C ; ºC > :
(a)V (T1)
= ((< ¹A; ºA >!< ¹C ; ºC >)^ < ºC ; ¹C >)!< ºA; ¹A >
= (< max(ºA; ¹C);min(¹A; ºC) > ^ < ºC ; ¹C >)!< ºA; ¹A >
= (< min(max(ºA; ¹C); ºC);max(min(¹A; ºC); ¹C) >!< ºA; ¹A >
= (< max(min(¹A; ºC); ¹C ; ºA);min(max(ºA; ¹C); ºC ; ¹A) > :
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Now, we see that

X ´ max(min(¹A; ºC); ¹C ; ºA)¡min(max(ºA; ¹C); ºC ; ¹A)

¸ min(¹A; ºC)¡min(ºC ; ¹A) = 0;
i.e. T1 is an IFT.
(b)V (T2)
= (((< ¹A; ºA > ^ < ¹B; ºB >)!< ¹C ; ºC >)^ < ºC ; ¹C >
^ < ¹B; ºB >)!< ºA; ¹A >
= (< max(ºA; ºB; ¹C);min(¹A; ¹B; ºC > ^
< min(ºC ; ¹B);max(¹C ; ºB) >)!< ºA; ¹A >

=< min(ºC ; ¹B;max(ºA; ºB; ¹C);max(¹C ; ºB);
min(¹A; ¹B; ºC) >!< ºA; ¹A >
=< max(¹C ; ºB; ºA;min(¹A; ¹B; ºC));
min(ºC ; ¹B; ¹A;max(ºA; ºB; ¹C)) > :
Let

Y ´ max(¹C ; ºB; ºA;min(¹A; ¹B; ºC))¡min(ºC ; ¹B; ¹A;max(ºA; ºB; ¹C))

¸ min(¹A; ¹B; ºC))¡min(ºC ; ¹B; ¹A) = 0:
Therefore T2 is an IFT.

(c)V (T3) = (((< ¹A; ºA > ^ < ¹B; ºB >)!< ¹C ; ºC >)^ < ºC ; ¹C >)
!< ºA; ¹A > t < ºB; ¹B >

= ((< min(¹A; ¹B);max(ºA; ºB) >!< ¹C ; ºC >)^ < ºC ; ¹C >)
!< max(ºA; ºB);min(¹A; ¹B) >

= (< max(ºA; ºB; ¹C);min(¹A; ¹B; ºC) > ^ < ºC ; ¹C >)
!< max(ºA; ºB);min(¹A; ¹B) >

=< min(max(ºA; ºB; ¹C); ºC);max(min(¹A; ¹B; ºC); ¹C) >
!< max(ºA; ºB);min(¹A; ¹B) >

=< max(min(¹A; ¹B; ºC); ¹C ; ºA; ºB);
min(max(ºA; ºB; ¹C); ºC ; ¹A; ¹B) > :
Now, we see that

Z ´ max(min(¹A; ¹B; ºC); ¹C ; ºA; ºB)¡min(max(ºA; ºB; ¹C); ºC ; ¹A; ¹B)

¸ min(¹A; ¹B; ºC)¡min(ºC ; ¹A; ¹B) = 0;

i.e. T3 is an IFT.
From the values of the expressions Y and Z we see, that Y = Z. On the other hand,

easily it can be check directly, that T2 ´ T3 (i.e., T2 ¾ T3 & T3 ´ T2) is an IFT. Moreover,
T2 ´ T3 is an ordinary tautology, too, i.e.,

V (T2 ´ T3) =< 1; 0 > :

Also, T1 ¾ T2 and T1 ¾ T3 are IFTs, but not always T2 ¾ T1 and T3 ¾ T1 are IFTs,
while from the ¯rst order's point of view, T1; T2 and T3 are tautologies. From this, we
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can see that the intuitionistic fuzzy logic approach gives a possibility for a more detailed
description of the situations than the standard (¯rst-order) logic approach.

x3. Consequences

Apart of the possibility of a new application of the approach at issue, there are at least
two new conclusions to be drawn from it, namely:
- the existence of an additional relationship between con¯rmation and refutation. This

concerns not only the actual proof of theories but more generally it is also, signi¯cant for
overcoming the onesidedness of both con¯rmationalism and falsi¯cationism.
- the schematic nature of the general solution of the question and accordingly the need

for a speci¯c ¯xing (de¯niting) of the truth values in every particular case, basing on a
speci¯c analysis.
Let us de¯ne for the propositional forms A and B, for which V (A) =< ¹A; ºA > and

V (B) =< ¹B; ºB >; that:

V (A) · V (B) iff (¹A · ¹B & ºA ¸ ºB);

V (A) > V (B) iff (¹A > ¹B & ºA < ºB):

Let us assume that the intuitionistic fuzzy values of A ¹A and ºA be ¯xed. Then, from
the form of T2 we see that the bigger ¹C and the smaller ºC (i.e. the more increasing the
intuitionistic fuzzy truth of ¹B), the more reliable is T2.
Now, let us assume that ¹A be ¯xed. If V (A) · V (B) or if V (A) · V (:C), then the

truth value of T2 will not be changed. If V (A) > V (B) or if V (A) > V (:C), then the truth
value of T2 can increase.
Let us assume that ºA be ¯xed. If V (A) ¸ V (B) or if V (B) · V (:C), then the truth

value of T2 will not be changed. If V (A) < V (B) or if V (B) < V (:C), then the truth value
of T2 can increase.
From above we see that if ¹B is ¯xed, then if V (A) ¸ V (:C) or if V (B) ¸ V (:C), then

the truth value of T2 will not be changed, but if V (A) < V (:C) or if V (B) < V (:C), then
the truth value of T2 can increase.

x4. An example

We shall apply in retrospection the obtained result to a characteristic situation concern-
ing the testing of the Special Theory of Relativity (STR). Its empirical basis comprises
three kinds of results which may be rank-ordered according to their signi¯cance, as follows:
con¯rmation of predictions, explanation of new facts, and new explanation of well-known
facts.
As to disproving or embaracing facts one may distinguish three successive stages, name-

ly:
A. Immediatly after the framing of the STR, represented by the ¯ndings of W.Kauf-

mann's experiments (1906).
B. In the 20-ies and the 30-ies when the positive results establishing the absolute motion

of the Earth were annonced (D.Miller) [8]
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C. Since the middle 60-ies when the possibility to measure the velocities of cosmic
objects relative to the background cosmic radiation was stated, as well as superluminous
velocities (tachions) were admitted, etc. [9].
The most dramatic, interesting and instructive seems to be the ¯rst stage. Kaufmann's

attempt to establish the dependence of the electron mass increase with the velocity did not
con¯rm the consequence of the electron theory and the STR. This knocked out Lorentz who
conceived it as a failure of his theory, i.e. he proceeded along the lines of falsi¯cationism.
Another is Einstein's attitude, viz. that \only after a more diverse body of observa-

tions becomes available will be possible to decide with con¯dence whether the systematic
deviations are due to a not yet recognized source of errors or to the circumstance that the
foundations of the theory of relativity do not correspond to the facts" [10]. This is an
evaluation along the lines of our truth function, wherein - even at this stage - the empirical
support of the theory - prevails over the alleged disproof.
Somewhat similar is the situation after the report of positive results of the repeated

Michelson's experiments. By then the STR is well-founded to such an extent that the
physical community did not attach almost any signi¯cance to these communications. Acc-
tually the value of V with a prevailing con¯rmation is adopted.
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