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Abstract. In the paper a genetic algorithm for feed rate profiles design is proposed. An E. coli MC4110 fed-batch fermentation process 
is considered. The feed rate profiles based on three different lengths of chromosomes are synthesized. The ration of the substrate 
concentration and the difference between actual cell concentration and theoretical maximum cell concentration is used as an objective 
function. As a result the genetic algorithm synthesized optimal feed profiles fulfilling the defined criterion. In the case of 60 genes 
obtained feed rate profile cell concentration has an ideal increase for the complete fermentation period, achieving final cell concentration 
of 5.26 g·l-1. During the process, 1.38 l feeding solution is used. This is a satisfactory result for the fermentation system due to 
economical effect and process effectiveness. The obtained results for feed rate profiles based on different chromosome lengths 
demonstrate good computational performance of the proposed genetic algorithm. 
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INTRODUCTION 
 

Optimization of fed-batch fermentation processes has been a 
subject of research since many years. Control opportunities in 
fed-batch operated fermentations have been reviewed in detail 
in a number of articles. It is well known that the design of 
high-performance model-based control algorithms for 
biotechnological processes is hampered by two major 
problems which require adequate engineering solutions. First, 
the process kinetic is too often poorly understood nonlinear 
functions, while the corresponding parameters are in general 
time-varying. Second, up to now there is a lack of reliable 
sensors suited to real-time monitoring of the process variables 
which are needed in advanced control algorithms. 
 
Currently, the feed rate design is commonly solved by 
mathematical model based optimization methods. If an 
accurate model of the system is available optimization 
procedures can be used to calculate the feeding strategy [4, 6, 
8, 15, 16]. However, fermentation processes are typically very 
complex, involving different transport phenomena, microbial 
components and biochemical reactions. These properties make 
processes difficult to control with traditional techniques. For 
simple mathematical models, the problem can be solved 
analytically, from the Hamiltonian function, by applying the 
minimum principle of Pontryagin [14, 17-19]. However, 
besides having a problem of singular control, those 
methodologies become too complex when the number of state 
variables increases. As an alternative to surmount these 
difficulties the global optimization methods are used. 
 
Global optimization methods can be roughly classified as 
deterministic and stochastic strategies. Stochastic methods for 
global optimization ultimately rely on probabilistic approaches 
and can locate the vicinity of global solutions with good 
efficiency. There are many different kinds of stochastic 
methods for global optimization, but the following groups 
should be highlighted: adaptive stochastic methods; clustering 
methods; evolutionary algorithms; simulated annealing and 
other meta-heuristics.  
 
Several different types of evolutionary search methods were 
developed independently. These include: genetic 
programming, which evolve programs; evolutionary 
programming, focused on optimizing continuous functions 
without recombination; evolutionary strategies, focused on 
optimizing continuous functions with recombination; and 

genetic algorithms (GA) [7], focused on optimizing general 
combinatorial problems.  
 
GA is a global, parallel, stochastic search method, founded on 
Darwinian evolutionary principles. Since its introduction and 
subsequent popularization, the GA has been frequently 
utilized as an alternative optimization tool to conventional 
methods.  
 
Specific particularities of the fermentation processes lead to 
estimation of a large-scale problem and as a successful tool for 
solving this problem are examined GA. The GA effectiveness 
and robustness have been demonstrated for identification of 
fed-batch cultivation processes [2, 10-12].  
 
The GA is already used for design of feed rate profiles for 
glucose and glutamine, based on a seventh-order nonlinear 
model of fed-batch culture of hybridoma cells [3]. In the work 
[5] the optimal profile for the substrate feeding rate in a fed-
batch culture of S. baicalensis georgi is determined using a 
GA. The experimental results showed that neurocontrol 
incorporated with a genetic algorithm improved the flavonoid 
production compared with a simple fuzzy logic control 
system. 
 
In this paper a genetic algorithm for feed rate profiles design 
during an E. coli MC4110 fed-batch fermentation process is 
proposed. The bacterium E. coli is the microorganism of 
choice for the production of the majority of the valuable 
biopharmaceuticals. E. coli usually grows under fed-batch 
mode due to the effect of acetic acid, which is produced when 
glucose is present above certain concentrations. Here an 
optimal state of microorganisms’ culture is maintained by GA 
synthesized feed rate profiles. 
 

FED-BATCH FERMENTATION PROCESS  
OF E. COLI MC4110 

 
The mathematical model of fed-batch fermentation of  
E. coli MC4110 has the form [1, 9, 12, 14]: 
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where: X is the concentration of biomass, [g·l-1];  
S – concentration of substrate (glucose), [g·l-1]; F – feeding 
rate, [l·h-1]; V – the volume of the content, [l]; Sin – substrate 
concentration of the feeding solution, [g·l-1];  

maxµ  – maximum growth rate, [h-1]; Sk  – saturation constant, 

[g·l-1]; XSY  – yield coefficient, [g·g-1]. 

 
The values of the model parameters used in simulations are 
[13]: maxµ = 0.52 h-1; Sk = 0.023g·l-1; XSY = 0.5. 

 
Initial conditions of the process variable are [1]:  

X(0) = 1.252 g·l-1; S(0) = 0.812 g·l-1;  
V(0) = 1.35 l; Sin = 100 g·l-1. 

 
APPLICATION OF GENETIC ALGORITHMS  

FOR FEED RATE PROFILES DESIGN 
 

Background of the Genetic Algorithm 
Genetic algorithms are a class of non-gradient methods. The 
basic idea of GA is the mechanics of natural selection. Each 
optimization parameter, (xn), is coded into a gene as for 
example a real number or a string of bits. The corresponding 
genes for all parameters, x1, …, xn, form a chromosome, 
which describes each individual. A chromosome could be an 
array of real numbers, a binary string, a list of components in a 
database, all depending on the specific problem. Each 
individual represents a possible solution, and a set of 
individuals form a population. In a population, the fittest are 
selected for mating. Mating is performed by combining genes 
from different parents to produce a child, called a crossover. 
Solutions are also “mutated” by making a small change to a 
single element of the solution. Finally, the children are 
inserted into the population and the procedure starts over 
again. The optimization continues until the population has 
converged or the maximum number of generations has been 
reached.  
 
A pseudo code of a GA is presented as: 

 

i = 0 set generation number to zero 

initpopulation 
P(0) 

initialize a usually random population 
of individuals 

evaluate P(0) evaluate fitness of all initial individuals 

while (not done) 
do 

test for termination criterion  
(time, fitness, etc.) 

begin  

i = i + 1 increase the generation number 

select P(i)  
from P(i – 1) 

select a sub-population for offspring 
reproduction 

recombine P(i) recombine the genes of selected parents 

mutate P(i) perturb the mated population stochastically

evaluate P(i) evaluate its new fitness 

end  

 
Initial population: A GA starts with a population of strings to 
be able to generate successive populations of strings 
afterwards. The initialization is done randomly. A binary 20 
bit encoding is considered. Binary representation is the most 
common one, mainly because of its relative simplicity. 
 
Reproduction: An important aspect is to decide which 
individuals should be chosen as parents for the purpose of 
reproduction. With GA, this selection is based on the string 

fitness: according to the “survival of the fittest” principle. The 
best known selection mechanism, roulette wheel selection, is 
used in the proposed GA. 
 
Recombination: Once two parents have been selected, the GA 
combines them to create two new offspring using crossover 
operator. The role of the crossover operator is to allow the 
advantageous traits to be spread throughout the population in 
order that the population as a whole may benefit from this 
chance discovery. The crossover is the prime distinguishing 
factor of a GA from other optimization algorithms. Here, 
double point crossover is employed. 
 
Mutation: The last operator is the mutation algorithm. The 
effect of mutation is to reintroduce divergence into a 
converging population. The biological inspiration behind this 
operator is the way in which a chance mutation in a natural 
chromosome can lead to the development of desirable traits 
which give the individual displaying these characteristics an 
advantage over its competitors. In accepted encoding here a 
bit inversion mutation is used. This prevents the solution from 
converging to some local optimal solutions; thereby the global 
optimal solution can be obtained. 
 
The GA operators and parameters are summarized in Tables 1 
and 2 based on [13]. 
 
Representation of chromosomes: Representation of 
chromosomes is a critical part of GA application. Here, each 
chromosome of the population represents a feed rate profile as 
a sequence of feed rate values. The simplest way to represent 
it was by using a piecewise approximation of the feed rate 
profile. The profile is divided into equal intervals and the feed 
rate values at the breakpoints are registered. The sequence of 
numbers obtained is considered a chromosome and each gene 
represented the feed rate after definite time. Three 
chromosomes representations are proposed: 

• 1st: division into equal 30 intervals (30 genes); 
• 2nd: division into equal 60 intervals (60 genes);  
• 3rd: division into equal 100 intervals (100 genes).  

 
Every gene is coded in range F = 0 - 0.05 l·h-1 [1]. 
 

Table 1. Genetic algorithm operators 

Operator Type 
encoding binary 
crossover double point 
mutation bit inversion 
selection roulette wheel selection 
fitness function linear ranking 

 
Table 2. Genetic algorithm parameters 

Parameter Value 
generation gap 0.97 
crossover rate 0.70 
mutation rate 0.05 
precision of binary representation 20 
number of individuals 100 
number of generations 150 

 
Evaluation: After every generated population, the individuals 
of the population should be evaluated to be able to distinguish 
between good and bad individuals. The evaluation function 
plays a role similar to that which the environment plays in 
natural evolution and it rates chromosome in terms of fitness. 
This is done by mapping the objective function to a “fitness 
function”: a non-negative figure of merit. Here linear ranking 
is used. 
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The objective function (JOF) utilized here is presented as: 
 
JOF = f(XActual, XTheory, S) → min (4) 
 
The genetic algorithm syntheses feed rate profile based on 
minimization of the ration of the substrate concentration (S) 
and the difference between actual cell concentration (XActual) 
and theoretical maximum cell concentration (XTheory). The 
results in [13] show that the feed profile formed by the 
objective function (4) is superior to the feed rate profiles 
formed by the rest five objective functions. Therefore, here the 
objective function (4) is considered. 
 
Feed Rate Profiles Design 
Since GA are stochastic, their performance usually varies from 
generation to generation. Extensive simulation tests have been 
conducted on the GA to test the effectiveness of the algorithm, 
using the model (1) – (3) and objective function (4). Three 
problems (30, 60 and 100 genes in chromosome) are running 
50 executions with the GA. The resulting feed rate profiles, as 
well as the biomass and substrate dynamics are depicted on 
Figs. 1 – 3.  
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c) feed rate profile 

Fig. 1. Resulting dynamics of biomass and substrate and feed 
rate profile in case of 30 genes in chromosome 

 
All experiments reported were run on a PC with a Pentium IV 
3.2 GHz processor in Matlab environment. Average values of 
the best results at a certain evaluation are calculated. In Table 
2 are presented the average values of the objective function 
(JOF), the biomass concentration in the end of the fermentation 
process (Xend) and the total amount of substrate used for 
process feeding (FTotal). The genetic algorithm produce the 
same results with more than 85% coincidence. 
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c) feed rate profile 

Fig. 2. Resulting dynamics of biomass and substrate and feed 
rate profile in case of 60 genes in chromosome 
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c) feed rate profile 

Fig. 3. Resulting dynamics of biomass and substrate and feed 
rate profile in case of 100 genes in chromosome 
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Table 2. Results from the feed rate design. 

Gene JOF Xend, g·l-1 FTotal, l 
30 0.0308 4.32 0.51 
60 0.0295 5.26 1.38 
100 0.0295 5.29 1.96 

 
The results show that for all tests the required objective 
function has been achieved. In the case of a chromosome with 
30 genes, the resulting feed rate profile is assumed as not 
satisfactory result. In this case, considered piecewise 
approximation of the feed rate profile is not appropriate. 
Better results are achieved in the cases of chromosome with 
60 and 100 genes. The genetic algorithm synthesized feed rate 
profile resulting in generally higher final cell concentration 
(5.29 g·l-1) using chromosome with 100 genes. Nevertheless, 
the feed rate profile achieved by chromosome with 60 genes is 
defined as the superior to the rest of profiles. The objective 
function is the same as in the case of 100 genes and the 
biomass concentration in the end of the fermentation process 
is close to biomass concentration achieved in the case of 60 
genes. In the same time the higher final cell concentration is 
achieved using only 1.38 l feeding solution. In the case of 
chromosome with 100 genes almost 2 l solution is used, which 
is worse result from the economical point of view and process 
effectiveness. 
 

CONCLUSIONS 
 
In this work genetic algorithms are used for design of feed rate 
profiles during an E. coli MC4110 fermentation process. 
Development of a suitable feeding strategy is critical in fed-
batch operation modes. During the fed-batch fermentation of 
E. coli the system states change considerably, from a low 
initial to a very high biomass and product concentration. This 
dynamic behavior motivates the development of optimization 
methods to find the optimal input feeding trajectories in order 
to improve the process. A genetic algorithm using different 
chromosome lengths is proposed in order to optimize the 
feeding trajectory of the fermentation process. The ration of 
the substrate concentration and the difference between actual 
cell concentration and theoretical maximum cell concentration 
is used as an objective function. 
 
The proposed genetic algorithm is found to be an effective and 
efficient method for solving the optimal feed rate profile 
problem. The GA is capable of simultaneously optimizing 
feed rate profile for a given objective function. However, the 
results seem to indicate that the feed profile formed using 
chromosome with 60 genes is superior to the rest feeding 
trajectories. Based on obtained feed rate profile cell 
concentration has an ideal increase for the complete 
fermentation period, achieving final cell concentration of  
5.26 g·l-1 using 1.38 l feeding solution. This is a satisfactory 
result for the fermentation system due to the economical effect 
and process effectiveness. 
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