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1 Introduction

Although there are different opinions about intuitionistic
fuzzy events, the following definitions are accepted generally
([1], [5]). Let (€2, S) be a measurable space. By an intuition-
istic fuzzy event ([5]) we mean any pair

A= (NA7VA)

of S—measurable functions, such that pa,v4 : Q@ — [0,1]
and pa +v4 < 1.

The function p 4 is the membership function and the func-
tion v4 is the non-membership function. The family F of all
intuitionistic fuzzy events is ordered in the following way:

A<B <& pa<pp,va>vp.

Evidently
AANB = (uaApup,vaVug),

AVB = (uaVpup,vave).

It is easy to see that A,, " A ifand only if s, " j14 and
VA, \ VAa.

The notion of intuitionistic fuzzy event is a natural general-
ization of the notion of a fuzzy event. Given a fuzzy event 1 4,
the pair (a4, 1 — pa) is an intuitionistic fuzzy event, so intu-
itionistic fuzzy events can be seen as generalizations of fuzzy
events. Hence we want to define probability on intuition-
istic fuzzy events generalizing probability on fuzzy events.
And actually, two constructions were proposed independently
by Gregorzewski [5] and Gerstenkorn [4], both based on the
Fukasiewicz operations

a®b=min(a+0b,1),

a®b=max(a+b—1,0).

Operations @, ® on [0, 1]? (not necessarily Lukasiewicz oper-
ations) can be naturally extended to intuitionistic fuzzy events
in the following way

A®B=(ua®pup,vadun),

A©B = (1a©®pup,va ®vp),
where A = (ua,v4) and B = (up,vp).
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If o : Q — [0, 1] is a fuzzy set, then (u, 1 — ) is an IF set
corresponding to this fuzzy set. Similarly as in the classical
case, in the fuzzy case and in the quantum case, a probability
(or state) has been introduced as a mapping m : F — [0, 1]
being continuous, additive and satisfying some boundary con-
ditions. Here the main difference is the additivity which is
now of the following form

m(A) +m(B) = m(A @ B) + m(A © B).

There exists a general representation theorem for IF-
probability. If (2, S, P) is a probability space, then to any
Lukasiewicz state m : F — [0, 1] there exists a € [0, 1] such
that

m(A) =(1—-a) | padP+a(l — [ vadP)
[rareo]

for any A € F (see [2]). Of course, the constructions (see [4]
[5]) can be obtained as a very special case.

Generally, there are infinitely many possibilities how to de-
fine additivity

m(A) +m(B) =m(S(A,B)) + m(7(A,B))
where
S(A,B) = (S(pa, uB), T(va,vB)),
T(A,B) = (T'(pa, p15),S(va,vs))
S, T:[0,1* — [0, 1]

being such binary operations (7" is a t-norm and S is dual t-
conorm [6]), that

S(u,v) +T(1 —u,1—v) <1

The Kolmogorov probability theory has 3 fundamental no-
tions: probability, random variable and expectation. In our
fuzzy case, an analogous situation occurs.

Throughout this paper we consider the following operations
with intuitionistic fuzzy events

A@QB = ((pa"+p5") " AL 1=((1=va)"+(1-vp)") 7 AL),

AOB = (pa,va)©(up,vp) = (patup—1)V0; (vat+vp)Al).

Remark 1.1 The operation ©¢g was introduced by Yager [6],
the operation © is Lukasiewicz operation. This is a special
case of operations studied in [9], where p(u) = u™,n € N is
fixed for each u € [0, 1]. Special case n = 2 is studied in [2].

We are not able to embed the family F with these operations
into an MV-algebra. Of course, we are able to prove probabil-
ity representation theorems, to construct the joint observable
and prove such fundamental theorems as central limit theorem
or laws of large numbers.
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2 Q-probability and Q-observables

Definition 2.1 Let F be the family of all intuitionistic fuzzy
events, J be the family of all compact subintervals of the unit
interval [0,1]. O-probability is any mapping P : F — J
satisfying the following conditions:

(i) P((170)) = [17 1},73((0,1)) =
(i) A©B=(0,1) = P(A®gB) =

(iii) An /A =P(A,) /P(A).
(Here [ay, by,] " [a,b],ifa, /" a,b, /b))

[0,0};
P(A) +P(B);

Remark 2.2 If A is a crisp set, then gy = €a,va = &g,
Theorem 2.7 implies that

PhaP(A) = (1 - a)p(A) + ar(A)

PHP(AT) = (1 - a)p(A) + ar(4')

hence PsMarP(A) 4 PsharP(AN) = (1—a)p(Q) +ar(Q) = 1.
1t follows that there is a large class of examples extending the
classical definition. It makes possible to construct different
models describing some real processes.

Definition 2.3 A mapping m : F — [0, 1] is called a Q-state,
if the following conditions are satisfied:

(i) m((1,0)=1, m((0,1))=0;
(i) A©B =(0,1) = m(A®gB) =
n) / m(A).

Example 2.4 Let (2, S, p) be a probability space, then a nat-
ural example of Q-state is a function m : F — [0, 1] defined
by the following

m(A) +m(B);
(iii) An /A= m(A

m(sarva)) = / jia"dp,

Q

wheren € N is fixed natural number.

Let us suppose, that P maps F to J. We will present this
mapping with functions P°, P : F — [0, 1] in the following
manner P(A) = [P’(A), P¥(A)],A € F. Shorter notation
is used further on is P = [P, P*].

Theorem 2.5 P : F — J, is a Q-probability if and only if
P Pt F — [0,1] are Q-states.

Proof Let us suppose that P is an Q- probability, then since
[1,1]

=P((1,0) = [P*((1,0)), P*((1,0))],

we have 1 = P°((1,0)) and 1 = P#((1,0)).
Further let A ® B = (0,1). Then

[P’(A) +P°(B), 7’*‘( ) + P¥(B)] =

[P"(A), PH(A)] + [P"(B), P*(B)] = P(A) + P(B) =
P(A & B) = [P"(A & B), P*(A & B)],
hence
P°(A) +P"(B) = P’(A @ B)
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and
PH(A) + PH(B) = P¥(A &g B).
Finally

An /A implies [P’ (An), P*(An)] = P(An) / P(A),

hence
P’(An) / P°(A) and PH(A,) / PHA).
The opposite implication can be proved similarly. 0
Let us find the representation theorems for Q-states and Q-

probabilities. We are able to find this representation only for
representable Q-probabilities.

Definition 2.6 Q-probability Py = [P}, 730] F — J is rep-
resentable, if there exist functions f,g : R> — R and proba-
bilities p,r : S — [0, 1], such that

Po((pa,va)) =

= (7 ad, [ @y, o [ uaydp. [=vayan)
Q Q Q Q

Definition 2.7 Q-state mqy : F — [0, 1] is representable, if
there exist a function f : R*> — R and the probabilities p,r
S — [0, 1] such that

mol(uava)) =1 | [a)ap, [(1=vaydr
Q Q
Theorem 2.8 Representation Theorem

Let mg : F — [0,1] be a representable Q-state. Then there
exist o € [0, 1] and probabilities p,r : F — [0, 1] such that

foreach A e F

mo((iarva)) = (1 - a) / ja"dp + o / (1 - va)dr),

Q Q
wheren € N is fixed.
Firstly, let us prove the following lemma.

Lemma 2.9 Let f : [0,1]> — R be an additive and continu-
ous function, then f is linear.

Proof Let f : [0,1]2 — R, we show, that for each A € [0, 1]?
and each o € R such that

flad) =af(A).
Consider cases:

(D a € N, then f(aA) = f(A+ ...+ A) = af(4).

[e%

(I) aeQ",s0o3p,q€ Z,(p,q) =1,2

We have f(A) = f (;A) + ...+f (q >,

>0

q
where A € [0, 1], so %A € [0,1]2.

Then f(A) = qf (%A) and so f (5,4) = 11(A).
Let us take A € [0,1]% such that 2A € [0, 1],
then %A € [0,1]? and
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f(ea) = f <2A> N <;A> _

~pf (14) =p§f(A)-

(M) Since f is continuous and f(rA) = rf(A) forr € QT,
such that A,rA € [0, 1]%, by approximating any real
x € R by rational (z,,)2%; we get

fzA) = f(lim z,A) = lim f(z,A)=
= lim z,f(A4) = xzf(A).
Thus we proved that f is linear on [0,1]. O

Proof of Theorem 2.7

Let myq be a representable Q-state, we are looking for a for-
mula for function f from Definition 2.6. From property (i) of
Q-state (Definition 2.2) we get

— f( / 1"dp, / (1 - 0)"dr) = f(1,1),
Q Q

because of that
/ldp = /ldr =1
Q Q
we get
mo((1,0)) = f(1,1) =1

Analogously m((0,1)) = f(0,0) = 0.
What about additivity? Assume that A® B =

(0,1), so
pa+pp <1l,vg+vp>1
We get
mo(A®qg B) =

— f( / (/) + (ap)™)"dp.

Q/ V(1 —wva)m

— f( / (4a)" + (us)"dp, / (1= va)" + (1 — vp)"dr).

Q Q

+ (1 —wp)")))"dr) =

Analogously

mo(A) +mo(B)

P Gea)do. [ (1=va)dr) + ([ 5)"dp J(=vp)an).

Let us denote by

/UAdp:UIa/Mde:UIa

Q

/(171/14 deUQ,/
Q Q
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(1 —vg)dr = v,

we get

mo(A &g B) =
mo(A) +mo(B) =

flur + vi,ug + v2),
Jur,ug) + f(vr,v2).

Since the property (ii) holds, we have

flur +v1,ue +v2) = fur,uz) + f(vr,v2),

and that is why the function f is linear (f(xz +y) = f(z) +
f(y) holds). This equality holds by the previous Lemma.
Finaly f is continuous by the (iii) property of Definition 2.2.
O

Theorem 2.10 Representation Theorem of Q-probabilities
If Py is a representable Q-probability, then there exist real
numbers «, 3 € [0, 1] and probability mesures p,r1,19 : S —
[0, 1] such that ary < Pro that for each A = (pia,va) € F
there holds

Po((pa,va)) =[(1 - a)s{(uA)"dp + af(l -

va)"dri, (1= 3) [(pa "dp+ﬁf 1—VA)"d7“2}
Q

Proof Let Po(A) = [P3(A), PL(A)] be representable
Q-probability. Following Q-states P, Pg could be written by
previous formulas. 0

3 Q-observables and p-joint Q-observables
First, let us denote Borelian sets by B(R).

Definition 3.1 4 mapping © : B(R) — F is called a
Q-observable, if the following conditions are satisfied:

(i) x(R) = z(0) =
(ii) if ANB = () then x(A)ox(B) = (0,
z(A) ©q #(B);
(iii) A, /A= x(A4,) / x(A).
Theorem 3.2 Let x : B(R) — F be an Q-observable, P =
[’Pb,Pﬁ} : F — J be an Q-probability. Then the functions
Pox : B(R) — [0,1], Ptox : B(R) — [0, 1], are probability

measures.

(170)’ (0a1)§

1), and x(AUB) =

Proof' The proof is straightforward. 0

Theorem 3.3 Let « : B(R) — F be an Q-observable,
z(A) = (2"(A),1 — 2¥(A));w € Q. Then the functions
P,k B(R) — [0, 1] defined by

ph(A) = (@ (A w)"

are probability measures.

Proof Use instead of p(u) = ™ in Theorem 2.7 in [9]. O
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Definition 3.4 Let x,y : B(R) — F be Q-observables. By
the p-joint Q-observable h of x,y we understand a mapping
h : B(R?) — F satisfying the following conditions

(i) h(R?) = (1,0);h(0) =

(ii) if ANB = () then h(A)
h(A) ©q h(B);
(iii) An /A= h(A,) / h(A);

(iv) h(C x D) = z(C).y(D) for any C, D € B(R).
her)e)(ucavc)(MDvVD) = (pc-pp, 1 = (1 —ve).(1 -
VD

(0,1);

®h(B) = (0,1) and h(AUB) =

Remark 3.5 Analogously we can extend Definition 3.4 for fi-
nite collection of Q-observables.

Theorem 3.6 70 any Q-observables xz,y : B(R) — F there
exists their p-joint Q-observable h : B(R?) — F.

Proof Use instead of p(u) = u™ in Theorem 2.9 in [9]. O

4 Application of Q-observables

Let us mention one version of Central limit theorem: let
(&)52, be a sequence of independent, equally distributed,
square integrable random variables,

E(&) =a,0?(&) = o? foralli € N.

Then for any ¢ € R there holds

hmp<{ C"() \/ﬁ<t}> D(t).

n—oo

— n t w
Here (, = 1 Y & and ©(t) = \/% Ik e~ du.
i=1 —00

Now we are going to formulate an analogous assertion for

Q-observables.
First, we shall mention some useful definitions:

Definition 4.1 For any Q-probability P = [P*, P : F — J
and any Q-observable x : B(R) — F we define the expected
values by

By(z) = / 1P (1);

R

Ey(z) = [ tdPi(t)
/

and the variances by

72w) = [ (= Bfa) Papi(o)
R
/ (t — Ey(2))%dP2(t),
R
where P2 = P’ o x, Pt = P* oz, assuming that the integrals
exist.
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Assume T = (&1, ...
tor and g :

,€n) ¢ Q" — R™ is a random vec-
R™ — R is a Borel measurable function (e.g.

g(uq, ... u;). Then

g(fl?"'?é-n) :goT O — Rn7

is a transformation of T. Hence we get the following formula

(goT)"H(A) =T (g (4))
forany A € B(R). The formula justifies the following defini-
tion.

Definition 4.2 Let g,
21,y Ty : B(R) — F be Q-observables, h,,
their joint observable. Then the g,—transformation of h,
is a Q-observable y,, : B(R) — F given by y,(4) =
gy (A)) for any A € B(R).

R™ — R be a Borel function,
: B(R") — F

Definition 4.3 Let (x,)5°; be a sequence of Q-observables,
(hn)22, be a sequence of the joint Q-observables h,
B(R™) — F of v1,x2, ..., Ty (forn € N), m : F — [0,1] be
a Q-state. The sequence (x,,)22_, is independent (with respect
tom), if for any n € N and any C1,Cs, ...,C,, € B(R) there
holds

m(hn(Cy x Cy X ... x Cy)) = m(x1(C))..m(x,(Cp)).
Definition 4.4 4 sequence (x,)02, of Q-observables is
equally distributed, if m(x,,(A)) = m(x1(A)) foranyn € N
and A € B(R).

Theorem 4.5 (Central limit theorem)

Let (z,)52; be a sequence of independent, equally dis-
tributed, square integrable Q-observables, where E,(x,) =
a’, (By(xn) = a*) of(xn) = of, (0F(zn) = of) for each
n € N. Then for any ¢ € R there the following holds

t

((=00.1) = A= [ e *Fdu,

b
lim b (z1+..‘+wnfna
n~>oo,P Ubﬁ

(lim P!

n—oo

<$1+~~~+wn*naﬁ

ogv/n ((—oo,t))) = \/%_OO _

Proof Use Theorem 4.1 in [9]. O

5 Conclusion

Generalizing some notions proposed in [2] we constructed a
(Q—probability theory. The theory includes some known re-
sults (n = 1,n = 2), and also it opens the door for some
other applications. We have proved some representation the-
orems. As an open question and an inspiration for the future
research remains the problem of conditional probabilities for
this framework.
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