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Abstract— Following [9] some properties of Q-probability and
Q-states are studied. Representation theorem of Q-probabilities and
Q-states, the existence of the joint observable and The central limit
theorem are proved.
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1 Introduction
Although there are different opinions about intuitionistic
fuzzy events, the following definitions are accepted generally
([1], [5]). Let (Ω,S) be a measurable space. By an intuition-
istic fuzzy event ([5]) we mean any pair

A = (µA, νA)

of S−measurable functions, such that µA, νA : Ω → [0, 1]
and µA + νA ≤ 1.
The function µA is the membership function and the func-

tion νA is the non-membership function. The family F of all
intuitionistic fuzzy events is ordered in the following way:

A ≤ B ⇔ µA ≤ µB , νA ≥ νB .

Evidently
A ∧ B = (µA ∧ µB , νA ∨ νB),

A ∨ B = (µA ∨ µB , νA ∧ νB).

It is easy to see that An ↗ A if and only if µAn
↗ µA and

νAn ↘ νA.
The notion of intuitionistic fuzzy event is a natural general-

ization of the notion of a fuzzy event. Given a fuzzy event µA,
the pair (µA, 1 − µA) is an intuitionistic fuzzy event, so intu-
itionistic fuzzy events can be seen as generalizations of fuzzy
events. Hence we want to define probability on intuition-
istic fuzzy events generalizing probability on fuzzy events.
And actually, two constructions were proposed independently
by Gregorzewski [5] and Gerstenkorn [4], both based on the
Łukasiewicz operations

a ⊕ b = min(a + b, 1),

a 
 b = max(a + b − 1, 0).

Operations ⊕,
 on [0, 1]2 (not necessarily Łukasiewicz oper-
ations) can be naturally extended to intuitionistic fuzzy events
in the following way

A ⊕ B = (µA ⊕ µB , νA 
 νB),

A 
 B = (µA 
 µB , νA ⊕ νB),

whereA = (µA, νA) and B = (µB , νB).

If µ : Ω → [0, 1] is a fuzzy set, then (µ, 1 − µ) is an IF set
corresponding to this fuzzy set. Similarly as in the classical
case, in the fuzzy case and in the quantum case, a probability
(or state) has been introduced as a mapping m : F → [0, 1]
being continuous, additive and satisfying some boundary con-
ditions. Here the main difference is the additivity which is
now of the following form

m(A) + m(B) = m(A ⊕ B) + m(A 
 B).

There exists a general representation theorem for IF-
probability. If (Ω,S, P ) is a probability space, then to any
Łukasiewicz state m : F → [0, 1] there exists α ∈ [0, 1] such
that

m(A) = (1 − α)
∫
Ω

µAdP + α(1 −
∫
Ω

νAdP )

for anyA ∈ F (see [2]). Of course, the constructions (see [4]
[5]) can be obtained as a very special case.
Generally, there are infinitely many possibilities how to de-

fine additivity

m(A) + m(B) = m(S(A,B)) + m(T (A,B))

where
S(A,B) = (S(µA, µB), T (νA, νB)),

T (A,B) = (T (µA, µB), S(νA, νB))

S, T : [0, 1]2 → [0, 1]

being such binary operations (T is a t-norm and S is dual t-
conorm [6]), that

S(u, v) + T (1 − u, 1 − v) ≤ 1.

The Kolmogorov probability theory has 3 fundamental no-
tions: probability, random variable and expectation. In our
fuzzy case, an analogous situation occurs.
Throughout this paper we consider the following operations

with intuitionistic fuzzy events

A⊕QB = ((µA
n+µB

n)
1
n ∧1; 1−((1−νA)n+(1−νB)n)

1
n ∧1),

A
B = (µA, νA)
(µB , νB) = ((µA+µB−1)∨0; (νA+νB)∧1).

Remark 1.1 The operation ⊕Q was introduced by Yager [6],
the operation 
 is Łukasiewicz operation. This is a special
case of operations studied in [9], where ϕ(u) = un, n ∈ N is
fixed for each u ∈ [0, 1]. Special case n = 2 is studied in [2].

We are not able to embed the family F with these operations
into an MV-algebra. Of course, we are able to prove probabil-
ity representation theorems, to construct the joint observable
and prove such fundamental theorems as central limit theorem
or laws of large numbers.
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2 Q-probability and Q-observables
Definition 2.1 Let F be the family of all intuitionistic fuzzy
events, J be the family of all compact subintervals of the unit
interval [0, 1]. Q-probability is any mapping P : F → J
satisfying the following conditions:

(i) P((1, 0)) = [1, 1],P((0, 1)) = [0, 0];

(ii) A 
 B = (0, 1) ⇒ P(A ⊕Q B) = P(A) + P(B);

(iii) An ↗ A ⇒ P(An) ↗ P(A).
(Here [an, bn] ↗ [a, b], if an ↗ a, bn ↗ b.)

Remark 2.2 If A is a crisp set, then µA = ξA, νA = ξB ,
Theorem 2.7 implies that

Psharp(A) = (1 − α)p(A) + αr(A)

Psharp(A′) = (1 − α)p(A′) + αr(A′)

hence Psharp(A)+Psharp(A′) = (1−α)p(Ω)+αr(Ω) = 1.
It follows that there is a large class of examples extending the
classical definition. It makes possible to construct different
models describing some real processes.

Definition 2.3 A mapping m : F → [0, 1] is called a Q-state,
if the following conditions are satisfied:

(i) m((1,0))=1, m((0,1))=0;

(ii) A 
 B = (0, 1) ⇒ m(A ⊕Q B) = m(A) + m(B);

(iii) An ↗ A ⇒ m(An) ↗ m(A).

Example 2.4 Let (Ω,S, p) be a probability space, then a nat-
ural example of Q-state is a function m : F → [0, 1] defined
by the following

m((µA, νA)) =
∫
Ω

µA
ndp,

where n ∈ N is fixed natural number.

Let us suppose, that P maps F to J . We will present this
mapping with functions P�,P� : F → [0, 1] in the following
manner P(A) = [P�(A),P�(A)],A ∈ F . Shorter notation
is used further on is P = [P�,P�].

Theorem 2.5 P : F → J , is a Q-probability if and only if
P�,P� : F → [0, 1] are Q-states.

Proof Let us suppose that P is an Q- probability, then since

[1, 1] = P((1, 0)) = [P�((1, 0)),P�((1, 0))],

we have 1 = P�((1, 0)) and 1 = P�((1, 0)).
Further letA 
 B = (0,1). Then

[P�(A) + P�(B),P�(A) + P�(B)] =
[P�(A),P�(A)] + [P�(B),P�(B)] = P(A) + P(B) =

P(A ⊕Q B) = [P�(A ⊕Q B),P�(A ⊕Q B)],

hence

P�(A) + P�(B) = P�(A ⊕Q B)

and

P�(A) + P�(B) = P�(A ⊕Q B).

Finally

An ↗ A implies [P�(An),P�(An)] = P(An) ↗ P(A),

hence

P�(An) ↗ P�(A) and P�(An) ↗ P�(A).

The opposite implication can be proved similarly. �

Let us find the representation theorems for Q-states and Q-
probabilities. We are able to find this representation only for
representable Q-probabilities.

Definition 2.6 Q-probability P0 = [P�
0,P�

0] : F → J is rep-
resentable, if there exist functions f, g : R2 → R and proba-
bilities p, r : S → [0, 1], such that

P0((µA, νA)) =

= [f(
∫
Ω

(µA)ndp,

∫
Ω

(1−νA)ndr), g(
∫
Ω

(µA)ndp,

∫
Ω

(1−νA)ndr)].

Definition 2.7 Q-state m0 : F → [0, 1] is representable, if
there exist a function f : R2 → R and the probabilities p, r :
S → [0, 1] such that

m0((µA, νA)) = f


∫

Ω

(µA)ndp,

∫
Ω

(1 − νA)ndr


 .

Theorem 2.8 Representation Theorem
Let m0 : F → [0, 1] be a representable Q-state. Then there
exist α ∈ [0, 1] and probabilities p, r : F → [0, 1] such that
for each A ∈ F

m0((µA, νA)) = (1 − α)
∫
Ω

µA
ndp + α(

∫
Ω

(1 − νA)ndr),

where n ∈ N is fixed.

Firstly, let us prove the following lemma.

Lemma 2.9 Let f : [0, 1]2 → R be an additive and continu-
ous function, then f is linear.

Proof Let f : [0, 1]2 → R, we show, that for each A ∈ [0, 1]2

and each α ∈ R such that

f(αA) = αf(A).

Consider cases:

(I) α ∈ N, then f(αA) = f(A + ... + A︸ ︷︷ ︸
α

) = αf(A).

(II) α ∈ Q+, so ∃p, q ∈ Z, (p, q) = 1, p
q > 0.

We have f(A) = f

(
1
q
A

)
+ ... + f

(
1
q
A

)
︸ ︷︷ ︸

q

,

where A ∈ [0, 1]2, so 1
q A ∈ [0, 1]2.

Then f(A) = qf
(

1
q A

)
and so f

(
1
q A

)
= 1

q f(A).

Let us take A ∈ [0, 1]2 such that p
q A ∈ [0, 1]2,

then 1
q A ∈ [0, 1]2 and
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f(p
q A) = f

(
1
q
A

)
+ ... + f

(
1
q
A

)
︸ ︷︷ ︸

p

=

= pf
(

1
q A

)
= p

q f(A).

(III) Since f is continuous and f(rA) = rf(A) for r ∈ Q+,
such that A, rA ∈ [0, 1]2, by approximating any real
x ∈ R by rational (xn)∞n=1 we get

f(xA) = f( lim
n→∞

xnA) = lim
n→∞

f(xnA) =

= lim
n→∞

xnf(A) = xf(A).

Thus we proved that f is linear on [0,1]. �

Proof of Theorem 2.7
Let m0 be a representable Q-state, we are looking for a for-
mula for function f from Definition 2.6. From property (i) of
Q-state (Definition 2.2) we get

m0((1, 0)) = f(
∫
Ω

1ndp,

∫
Ω

(1 − 0)ndr) = f(1, 1),

because of that ∫
Ω

1dp =
∫
Ω

1dr = 1

we get
m0((1, 0)) = f(1, 1) = 1.

Analogouslym0((0, 1)) = f(0, 0) = 0.
What about additivity? Assume that A 
 B = (0, 1), so

µA + µB ≤ 1, νA + νB ≥ 1.

We get

m0(A ⊕Q B) =

= f(
∫
Ω

( n
√

((µA)n + (µB)n))ndp,

∫
Ω

(1 − (1 − n
√

((1 − νA)n + (1 − νB)n)))ndr) =

= f(
∫
Ω

(µA)n + (µB)ndp,

∫
Ω

(1 − νA)n + (1 − νB)ndr).

Analogously

m0(A) + m0(B) =
f(

∫
Ω

(µA)ndp,
∫
Ω

(1−νA)ndr)+f(
∫
Ω

(µB)ndp,
∫
Ω

(1−νB)ndr).

Let us denote by∫
Ω

µAdp = u1,

∫
Ω

µBdp = v1,

∫
Ω

(1 − νA)dr = u2,

∫
Ω

(1 − νB)dr = v2,

we get

m0(A ⊕Q B) = f(u1 + v1, u2 + v2),
m0(A) + m0(B) = f(u1, u2) + f(v1, v2).

Since the property (ii) holds, we have

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2),

and that is why the function f is linear (f(x + y) = f(x) +
f(y) holds). This equality holds by the previous Lemma.
Finaly f is continuous by the (iii) property of Definition 2.2.
�

Theorem 2.10 Representation Theorem of Q-probabilities
If P0 is a representable Q-probability, then there exist real
numbers α, β ∈ [0, 1] and probability mesures p, r1, r2 : S →
[0, 1] such that αr1 ≤ βr2 that for each A = (µA, νA) ∈ F
there holds

P0((µA, νA)) = [(1 − α)
∫
Ω

(µA)ndp + α
∫
Ω

(1 −

νA)ndr1, (1 − β)
∫
Ω

(µA)ndp + β
∫
Ω

(1 − νA)ndr2].

Proof Let P0(A) = [P�
0(A),P�

0(A)] be representable
Q-probability. Following Q-states P�

0,P�
0 could be written by

previous formulas. �

3 Q-observables and p-joint Q-observables
First, let us denote Borelian sets by B(R).

Definition 3.1 A mapping x : B(R) → F is called a
Q-observable, if the following conditions are satisfied:

(i) x(R) = (1, 0), x(∅) = (0, 1);

(ii) if A∩B = ∅ then x(A)
x(B) = (0,1), and x(A∪B) =
x(A) ⊕Q x(B);

(iii) An ↗ A ⇒ x(An) ↗ x(A).

Theorem 3.2 Let x : B(R) → F be an Q-observable, P =
[P�,P�] : F → J be an Q-probability. Then the functions
P�◦x : B(R) → [0, 1],P�◦x : B(R) → [0, 1], are probability
measures.

Proof The proof is straightforward. �

Theorem 3.3 Let x : B(R) → F be an Q-observable,
x(A) = (x�(A), 1 − x�(A));ω ∈ Ω. Then the functions
p�

ω, p�
ω : B(R) → [0, 1] defined by

p�
ω(A) = (x�(A)(ω))n;

p�
ω(A) = (x�(A)(ω))n

are probability measures.

Proof Use instead of ϕ(u) = un in Theorem 2.7 in [9]. �
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Definition 3.4 Let x, y : B(R) → F be Q-observables. By
the p-joint Q-observable h of x, y we understand a mapping
h : B(R2) → F satisfying the following conditions

(i) h(R2) = (1,0); h(∅) = (0,1);

(ii) if A∩B = ∅ then h(A)
h(B) = (0,1) and h(A∪B) =
h(A) ⊕Q h(B);

(iii) An ↗ A ⇒ h(An) ↗ h(A);

(iv) h(C × D) = x(C).y(D) for any C, D ∈ B(R).
here (µC , νC).(µD, νD) = (µC .µD, 1 − (1 − νC).(1 −
νD))

Remark 3.5 Analogously we can extend Definition 3.4 for fi-
nite collection of Q-observables.

Theorem 3.6 To any Q-observables x, y : B(R) → F there
exists their p-joint Q-observable h : B(R2) → F .

Proof Use instead of ϕ(u) = un in Theorem 2.9 in [9]. �

4 Application of Q-observables
Let us mention one version of Central limit theorem: let
(ξi)∞i=1 be a sequence of independent, equally distributed,
square integrable random variables,

E(ξi) = a, σ2(ξi) = σ2 for all i ∈ N.

Then for any t ∈ R there holds

lim
n→∞

p

({
ω;

ζn(ω) − a

σ

√
n < t

})
= Φ(t).

Here ζn = 1
n

n∑
i=1

ξi and Φ(t) = 1√
2π

t∫
−∞

e−
u2
2 du.

Now we are going to formulate an analogous assertion for
Q-observables.
First, we shall mention some useful definitions:

Definition 4.1 For any Q-probability P = [P�,P�] : F → J
and any Q-observable x : B(R) → F we define the expected
values by

E�(x) =
∫
R

tdP�
x(t);

E�(x) =
∫
R

tdP�
x(t)

and the variances by

σ2
� (x) =

∫
R

(t − E�(x))2dP�
x(t);

σ2
� (x) =

∫
R

(t − E�(x))2dP�
x(t),

where P�
x = P� ◦ x,P�

x = P� ◦ x, assuming that the integrals
exist.

Assume T = (ξ1, ..., ξn) : Ωn → Rn is a random vec-
tor and g : Rn → R is a Borel measurable function (e.g.

g(u1, ..., un) = 1
n

n∑
i=1

ui). Then

g(ξ1, ..., ξn) = g ◦ T : Ωn → Rn,

is a transformation of T. Hence we get the following formula

(g ◦ T )−1(A) = T−1(g−1(A))

for any A ∈ B(R). The formula justifies the following defini-
tion.

Definition 4.2 Let gn : Rn → R be a Borel function,
x1, ..., xn : B(R) → F be Q-observables, hn : B(Rn) → F
their joint observable. Then the gn−transformation of hn

is a Q-observable yn : B(R) → F given by yn(A) =
hn(g−1

n (A)) for any A ∈ B(R).

Definition 4.3 Let (xn)∞n=1 be a sequence of Q-observables,
(hn)∞n=1 be a sequence of the joint Q-observables hn :
B(Rn) → F of x1, x2, ..., xn (for n ∈ N ), m : F → [0, 1] be
a Q-state. The sequence (xn)∞n=1 is independent (with respect
to m), if for any n ∈ N and any C1, C2, ..., Cn ∈ B(R) there
holds

m(hn(C1 × C2 × ... × Cn)) = m(x1(C1))...m(xn(Cn)).

Definition 4.4 A sequence (xn)∞n=1 of Q-observables is
equally distributed, if m(xn(A)) = m(x1(A)) for any n ∈ N
and A ∈ B(R).

Theorem 4.5 (Central limit theorem)
Let (xn)∞n=1 be a sequence of independent, equally dis-
tributed, square integrable Q-observables, where E�(xn) =
a�, (E�(xn) = a�) σ2

� (xn) = σ2
� , (σ2

� (xn) = σ2
� ) for each

n ∈ N. Then for any t ∈ R there the following holds

lim
n→∞

P�
(

x1+...+xn−na�

σ�

√
n

((−∞, t))
)

= 1√
2π

t∫
−∞

e−
u2
2 du,

( lim
n→∞

P�
(

x1+...+xn−na�

σ�
√

n
((−∞, t))

)
= 1√

2π

t∫
−∞

e−
u2
2 du).

Proof Use Theorem 4.1 in [9]. �

5 Conclusion

Generalizing some notions proposed in [2] we constructed a
Q−probability theory. The theory includes some known re-
sults (n = 1, n = 2), and also it opens the door for some
other applications. We have proved some representation the-
orems. As an open question and an inspiration for the future
research remains the problem of conditional probabilities for
this framework.
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