Twelfth Int. Conf. on IFSs, Sofia, 17-18 May 2008 NIFS Vol. 14 (2008), 1, 100-108

Four extended level operators of membership/non-membership over Ituitionistic Fuzzy Sets

Tsvetan V.Vasilev

Faculty of Mathematics and Computer Science,
Sofia University,
5 James Bourchier Blvd.,
1164 Sofia, Bulgaria,
tsvetan.vasilev@gmail.com

Abstract. We present 4 new operators over IFSs which are extension of the already defined level operators of membership/non-membership in [1]. After that we define the new terms: cell, semicell and perfect n-net.

In [1] are defined the following 3 operators over IFS A:

$$\begin{split} N_{\alpha,\beta}(A) &= \{ \left\langle x, \mu_{\mathsf{A}}(x), \nu_{\mathsf{A}}(x) \right\rangle \mid x \in E, \mu_{\mathsf{A}}(x) \geq \alpha, \nu_{\mathsf{A}}(x) \leq \beta, \alpha + \beta \leq 1, 0 \leq \alpha \leq 1, 0 \leq \beta \leq 1 \} \\ N_{\alpha}(A) &= \{ \left\langle x, \mu_{\mathsf{A}}(x), \nu_{\mathsf{A}}(x) \right\rangle \mid x \in E, \mu_{\mathsf{A}}(x) \geq \alpha, 0 \leq \alpha \leq 1 \} \\ N^{\beta}(A) &= \{ \left\langle x, \mu_{\mathsf{A}}(x), \nu_{\mathsf{A}}(x) \right\rangle \mid x \in E, \nu_{\mathsf{A}}(x) \leq \beta, 0 \leq \beta \leq 1 \} \end{split}$$

 $N_{\alpha,\beta}(A)$ is called a set of (α,β) -level, generated by an IFS A. We have to note that it is obeyed $\alpha+\beta\leq 1$ in this definition. $N_{\alpha}(A)$ is called a set of level of membership α , generated by A. $N^{\beta}(A)$ is called a set of level of non-membership β , generated by A. Lets see the geometric interpretation of sets $N_{\alpha,\beta}(A)$, $N_{\alpha}(A)$, $N^{\beta}(A)$ (Fig.1,2,3,4):

Definition.1 We define the sets:

$$V_{\alpha}(A) = \{ \langle x, \mu_{A}(x), \nu_{A}(x) \rangle \mid x \in E, \mu_{A}(x) = \alpha, 0 \le \alpha \le 1 \}$$

$$H^{\beta}(A) = \{ \langle x, \mu_{A}(x), \nu_{A}(x) \rangle \mid x \in E, \nu_{A}(x) = \beta, 0 \le \beta \le 1 \}$$

(Fig.5,6)

Obviously $V_{\alpha}(A) \parallel \overline{AC}$ and $H^{\beta}(A) \parallel \overline{AB}$. Every couple of sets $(V_{\alpha}(A), H^{\beta}(A))$ where $\alpha, \beta \in [0,1]$ corresponds with exactly one ordered triad $\langle x, \alpha, \beta \rangle$, i.e. exactly one point in the square \overline{ABDC} . This point(ordered triad $\langle x, \alpha, \beta \rangle$) we will note with P_{α}^{β} for our convenience. When $\alpha, \beta \in [0,1]$ for the point P_{α}^{β} are possible the following three cases according to the sum $\alpha + \beta$:

- 1) If $\alpha + \beta < 1$ then P_{α}^{β} is an inside point for $\triangle \overline{ABC}$, i.e. $P_{\alpha}^{\beta} \in \triangle \overline{ABC}$, $P_{\alpha}^{\beta} \notin \overline{BC}$
- 2) If $\alpha + \beta = 1$ then $P_{\alpha}^{\beta} \in \overline{BC}$. In this case we say that P_{α}^{β} is a boundary point for $\Delta \overline{ABC}$
- 3) If $1 < \alpha + \beta < 2$ then P_{α}^{β} is an outside point for $\triangle \overline{ABC}$ (Fig.7,8,9)

If we put the restriction $\alpha + \beta \le 1$ and $\alpha, \beta \in [0,1]$ then every couple of sets $(V_{\alpha}(A), H^{\beta}(A))$ corresponds with only one point $P_{\alpha}^{\beta} \in \overline{ABC}$. In this case P_{α}^{β} can be an inside or a boundary point for \overline{ABC} .

If we put the restriction $\alpha + \beta \le 2$ and $\alpha, \beta \in [0,1]$ then every couple of sets $(V_{\alpha}(A), H^{\beta}(A))$ corresponds with only one point $P_{\alpha}^{\beta} \in \overline{ABDC}$. In this case P_{α}^{β} can be an inside, ouside or boundary point for $\Delta \overline{ABC}$.

We have to note that every set $V_{\alpha}(A)$ corresponds with the set $N_{\alpha}(A)$ and vice versa. Furthermore, the set $V_{\alpha}(A)$ is included in $N_{\alpha}(A)$. Therefore when we have $N_{\alpha}(A)$ we can define $V_{\alpha}(A)$. The opposite is not true, i.e. when we have $V_{\alpha}(A)$ we can not define $N_{\alpha}(A)$. The same dependences are observed between the sets $H^{\beta}(A)$ and $N^{\beta}(A)$.

Every set $N_{\alpha,\beta}(A)$ corresponds with one couple of sets $(V_{\alpha}(A), H^{\beta}(A))$ (here we have $\alpha + \beta \leq 1$ according to the definition of $N_{\alpha,\beta}(A)$). Therefore every set $N_{\alpha,\beta}(A)$ corresponds with one point P_{α}^{β} from the triangle $\triangle \overline{ABC}$. There are 2 cases about P_{α}^{β} : to be an inside or a boundary point for $\triangle \overline{ABC}$.

We are ready to define the following 4 new operators which we will name "extended level operators of membership/non-membership, generated by an IFS A".

Definition.2 The set

 $_{\alpha_1}N_{\alpha_2}(A) = \{< x, \mu_A(x), \nu_A(x) > | x \in E, \alpha_1 \le \mu_A(x) \le \alpha_2, 0 \le \alpha_1 \le \alpha_2 \le 1\}$ is called a set of level of membership between α_1 and α_2 , generated by an IFS A. (Fig.10,11)

Note 2.1 For every $\alpha \in [0,1]$ we have that $N_{\alpha}(A) = {}_{\alpha}N_{1}(A)$.

Note 2.2 If $_{\alpha_1}N_{\alpha_2}(A)$ and $\alpha_1 = \alpha = \alpha_2$ then we get the set $V_{\alpha}(A)$.

Definition.3 The set

 $^{\beta_1}N^{\beta_2}(A) = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in E, \beta_1 \leq \nu_A(x) \leq \beta_2, 0 \leq \beta_1 \leq \beta_2 \leq 1\}$ is called a set of level of non-membership between β_1 and β_2 , generated by an IFS A. (Fig.12,13)

Fig.12

Note 3.1 For every $\beta \in [0,1]$ we have that $N^{\beta}(A) = {}^{0}N^{\beta}(A)$

Note 3.2 If $^{\beta_1}N^{\beta_2}(A)$ and $\beta_1 = \beta = \beta_2$ then we get the set $H^{\beta}(A)$.

Definition.4 A set of (α, β) -level, generated by an IFS A, is defined as $N_{\alpha}^{\beta}(A) = \{ \langle x, \mu_{A}(x), \nu_{A}(x) \rangle | x \in E, \mu_{A}(x) + \nu_{A}(x) \leq 1, \\ \mu_{A}(x) \geq \alpha, \nu_{A}(x) \leq \beta, \alpha \in [0,1], \beta \in [0,1] \}$

Here, the special feature is $\alpha + \beta \le 2$. Therefore every set $N_{\alpha}^{\beta}(A)$ corresponds with one point P_{α}^{β} from the square \overline{ABDC} (whereas in the definition of $N_{\alpha,\beta}(A)$ we have $\alpha + \beta \le 1$. So in $N_{\alpha,\beta}(A)$ the point P_{α}^{β} is inside or boundary for $\Delta \overline{ABC}$). But here, in $N_{\alpha}^{\beta}(A)$, there are 3 cases about the point P_{α}^{β} : to be inside, boundary or outside for $\Delta \overline{ABC}$.

Note 4.1 In the definition of $N_{\alpha}^{\beta}(A)$ the restriction $\mu_{A}(x) + \nu_{A}(x) \le 1$ is observed. Therefore $N_{\alpha}^{\beta}(A)$ is really an intuitionistic fuzzy set.

There is the following dependence in the geometric interpretation:

- 1) If $\alpha + \beta \le 1$ then $N_{\alpha}^{\beta}(A) = N_{\alpha,\beta}(A)$
- 2) If $1 < \alpha + \beta < 2$ then $N_{\alpha}^{\beta}(A) = N_{\alpha,1-\alpha}(A)$ (Fig.14)

Definition.5 A set of $((\alpha_1, \alpha_2), (\beta_1, \beta_2))$ -level, generated by an IFS A, is defined

as:

$$_{\alpha_{1}}^{\beta_{1}}N_{\alpha_{2}}^{\beta_{2}}(A) = \{ \langle x, \mu_{A}(x), \nu_{A}(x) \rangle | x \in E, \mu_{A}(x) + \nu_{A}(x) \le 1,$$

$$\alpha_{1} \leq \mu_{A}(x) \leq \alpha_{2}, \beta_{1} \leq \nu_{A}(x) \leq \beta_{2},$$

$$0 \leq \alpha_{1} \leq \alpha_{2} \leq 1, \ 0 \leq \beta_{1} \leq \beta_{2} \leq 1$$

Here we have again that $\alpha_1 + \beta_1 \le 2$, $\alpha_2 + \beta_2 \le 2$ like in the definition of $N_{\alpha}^{\beta}(A)$.

We will say that $_{\alpha_1}^{\beta_1} N_{\alpha_2}^{\beta_2}(A)$ is an trivial set of $((\alpha_1, \alpha_2), (\beta_1, \beta_2))$ -level if one of the following 3 cases is executed:

1)
$$\alpha_1 = \alpha_2$$
, $\beta_1 = \beta_2$ 2) $\alpha_1 \neq \alpha_2$, $\beta_1 = \beta_2$ 3) $\alpha_1 = \alpha_2$, $\beta_1 \neq \beta_2$

Such trivial sets we will note with $_{\alpha_1}^{\beta_1}\widetilde{N}_{\alpha_2}^{\beta_2}(A)$ to make difference between trivials sets and the others.

The set $_{\alpha_1}^{\beta_1} N_{\alpha_2}^{\beta_2}(A)$ where $\alpha_1 \neq \alpha_2$ and $\beta_1 \neq \beta_2$ we will name non-trivial. We will work only with non-trivial sets.

From the two previous definitions follows that every set $_{\alpha_1}^{\beta_1}N_{\alpha_2}^{\beta_2}(A)$ corresponds with exactly 4 sets $N_{\alpha_1}^{\beta_1}(A)$, $N_{\alpha_2}^{\beta_2}(A)$, $N_{\alpha_1}^{\beta_2}(A)$, $N_{\alpha_2}^{\beta_1}(A)$. On the other hand we know that every set $N_{\alpha}^{\beta}(A)$ corresponds with a point P_{α}^{β} from the square \overline{ABDC} . Therefore $_{\alpha_1}^{\beta_1}N_{\alpha_2}^{\beta_2}(A)$ corresponds with exactly 4 points $P_{\alpha_1}^{\beta_1}$, $P_{\alpha_2}^{\beta_2}$, $P_{\alpha_1}^{\beta_2}$, $P_{\alpha_2}^{\beta_1}$ (we will note them with P_1^1 , P_2^2 , P_1^2 , P_2^1 for our facilitation). (Fig. 15.1, 15.2)

Since we have 4 points and have 3 cases for every point(P_{α}^{β} is inside, boundary or outside for $\Delta \overline{ABC}$), then we have the most $3\times 3\times 3\times 3=81$ possibiliteies about the mutual position of P_1^1 , P_2^2 , P_1^2 , P_2^1 , thence there are the most 81 cases about the view of P_1^{β} , P_2^{β} , P_2^{β} , thence there are the most 81 cases about the view of P_1^{β} , P_2^{β} , P_2^{β} , P_2^{β} , thence there are the most 81 cases about the view of P_1^{β} , P_2^{β} , P_2^{β} , P_2^{β} , P_2^{β} , and therefore we have to look at only these 3 cases:

1)
$$\alpha_2 + \beta_2 \le 1$$

In this case $P_2^2 \in \overline{ABC}$ (inside or boundary).

2)
$$\alpha_1 + \beta_1 = 1$$

We get $\beta_1 N_{\alpha_2}^{\beta_2}(A) = \{ \langle x, \alpha_1, 1 - \alpha_1 \rangle | x \in E \}$.

3)
$$\alpha_1 + \beta_1 < 1, \ \alpha_2 + \beta_2 > 1$$

In this case P_1^1 is inside and P_2^2 is outside. Therefore the only thing that we have to do is to define if P_1^2 and P_2^1 are inside, boundary or outside. Therefore we have exactly $3 \times 3 = 9$ possibilities.

If
$$\alpha_1 + \beta_1 > 1$$
, then $\mu_A(x) + \nu_A(x) > 1$ and therefore $\frac{\beta_1}{\alpha_1} N_{\alpha_2}^{\beta_2}(A) \equiv \emptyset$.

From the three cases we get together 12 possibilities about the view of the set $\frac{\beta_1}{\alpha_1}N_{\alpha_2}^{\beta_2}(A)$.

Definition.6 A cell, generated by an IFS A, is defined as:

$$_{\alpha_{1}}^{\beta_{1}}Cell_{\alpha_{2}}^{\beta_{2}}(A) = \{ \langle x, \mu_{A}(x), \nu_{A}(x) \rangle | x \in E, \ \mu_{A}(x) + \nu_{A}(x) \le 1,$$

$$\alpha_{1} \leq \mu_{A}(x) \leq \alpha_{2}, \ \beta_{1} \leq \nu_{A}(x) \leq \beta_{2},$$

$$\alpha_{1} + \beta_{2} < 1, \ \alpha_{2} + \beta_{1} < 1, \ \alpha_{2} + \beta_{2} \leq 1,$$

$$0 \leq \alpha_{1} < \alpha_{2} \leq 1, \ 0 \leq \beta_{1} < \beta_{2} \leq 1$$

One cell has the following geometric interpretation (Fig.16,17):

Definition.7 A semicell, generated by an IFS A, is defined as:

$$_{\alpha_{1}}^{\beta_{1}}SCell_{\alpha_{2}}^{\beta_{2}}(A) = \{ \langle x, \mu_{A}(x), \nu_{A}(x) \rangle | x \in E, \ \mu_{A}(x) + \nu_{A}(x) \leq 1,$$

$$\alpha_{1} \leq \mu_{A}(x) \leq \alpha_{2}, \ \beta_{1} \leq \nu_{A}(x) \leq \beta_{2},$$

$$\alpha_{1} + \beta_{2} = 1, \ \alpha_{2} + \beta_{1} = 1,$$

$$0 \leq \alpha_{1} < \alpha_{2} \leq 1, \ 0 \leq \beta_{1} < \beta_{2} \leq 1$$

Here is the geometric interpretation of a semicell(Fig. 18):

We have to note that a cell and a semicell $_{\alpha_1}^{\beta_1} Cell_{\alpha_2}^{\beta_2}(A)$ are also IFSs because the restriction $\mu_A(x) + \nu_A(x) \le 1$ is observed in the two previous definitions.

Definition.8 Lets
$$0 = \alpha_0 < \alpha_1 < \alpha_2 < ... < \alpha_{n-1} < \alpha_n = 1$$
.

$$\beta_0 = 1 - \alpha_n = 0$$

...
$$\beta_i = 1 - \alpha_{n-i}$$
 $i = 0, 1, 2, ..., n-1, n$

$$\beta_n = 1 - \alpha_0 = 1$$

Obviously $0 = \beta_0 < \beta_1 < \beta_2 < ... < \beta_{n-1} < \beta_n = 1$.

Perfect n-net, generated by an IFS A, is defined as:

$$Net_n(A) = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E, \mu_A(x) \in \{\alpha_0, \alpha_1, ..., \alpha_n\},$$

$$v_A(x) \in \{\beta_0, \beta_1, ..., \beta_n\}, \ \mu_A(x) + v_A(x) \le 1 \ \} \ \Box$$

Note 8.1 From the definition of perfect n-net we get that $\triangle \overline{ABC}$ can be splitted in exactly $\frac{n \cdot (n-1)}{2}$ cells and n semicells.

Note 8.2 One finit set from n real numbers between 0 and 1(where the first element is 0 and the last element is 1) defines a perfect net. The opposite statement is also true.

Similarly a perfect n-net can be defined from every finit set of points which lie on the hypotenuse \overline{BC} of $\triangle \overline{ABC}$.

Note 8.3 From the definition of perfect n-net follows that:

1)
$$\alpha_i + \beta_j = 1 \iff i + j = n$$

2)
$$\alpha_i + \beta_j < 1 \iff i + j < n$$
,

where $\langle x, \alpha_i, \beta_j \rangle \in Grid_n(A)$.

We can check easy that from the manner of defining $\{\alpha_i\}_{i=0}^n$ u $\{\beta_j\}_{j=0}^n$ from the Definition.8 follows the next equivalence: $\alpha_i + \beta_j > 1 \iff i+j > n$. Then we have thah $\langle x, \alpha_i, \beta_j \rangle \notin \overline{ABC}$ for these ordered triads $\langle x, \alpha_i, \beta_j \rangle$ for which $\alpha_i + \beta_j > 1$.

Definition.9 Uniform perfect n-net with step h, $h \in (0,1]$, generated by an IFS A, is defined as:

$$\begin{split} Net_{h,n}(A) = \{ \ < x, \mu_{\mathbb{A}}(x), \nu_{\mathbb{A}}(x) > \mid \ x \in E, \ \mu_{\mathbb{A}}(x) \in \{\alpha_0, \alpha_1, ..., \alpha_n\}, \\ \nu_{\mathbb{A}}(x) \in \{\beta_0, \beta_1, ..., \beta_n\}, \ \mu_{\mathbb{A}}(x) + \nu_{\mathbb{A}}(x) \leq 1 \ \ \}, \end{split}$$

where $\{\alpha_i\}_{i=0}^n$ in $\{\beta_j\}_{j=0}^n$ are defined in the following inductive way:

$$\alpha_0 = 0, \quad 0 \le \alpha_k \le 1, \quad \alpha_k = \alpha_{k-1} + h \quad \text{for} \quad k = 1, 2, 3, ..., n$$
 $0 \le b_l \le 1, \quad b_l = 1 - \alpha_{n-l} \quad \text{for} \quad l = 0, 1, 2, ..., n$

Reference

[1] Atanassov, K., Ituitionistic Fuzzy Sets, Springer Physica-Verlag, Heidelberg, 1999