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1 Introduction

The concept of an Intuitionistic Fuzzy Graph (IFG) was introduced in 1994 in [9]. It was
subsequently an object of some extensions (see [4, 10, 6]), representations (see [2, 3, 5]) and
applications (see [5]).

Here we discuss a new generalization of the IFGs, using as a basis the concepts of
Intuitionistic Fuzzy Sets (IFSs), Intuitionistic Fuzzy Relations (IFRs) and Index Matrices
(IMs). All necessary definitions are collected in [5]. We shall introduce only some of the
basic concepts.

2 Some necessary definitions

Let a set E be fixed. An IFS A in E is an object of the following form:

A = {〈x, µA(x), νA(x)〉|x ∈ E},

where functions µA : E → [0, 1] and νA : E → [0, 1] determine the degree of membership
and the degree of non-membership of the element x ∈ E, respectively, and for every x ∈ E:

0 ≤ µA(x) + νA(x) ≤ 1.

Let I be a fixed set of indices and R be the set of all real numbers. By an IM with index
sets K and L (K,L ⊂ I) we will mean the object (see [1]):

[K,L, {aki,lj}] ≡

l1 l2 . . . ln
k1 ak1,l1 ak1,l2 . . . ak1,ln
k2 ak2,l1 ak2,l2 . . . ak2,ln
...
km akm,l1 akm,l2 . . . akm,ln

where K = {k1, k2, ..., km}, L = {l1, l2, ..., ln}, for 1 ≤ i ≤ m, and for 1 ≤ j ≤ n : aki,lj ∈
R. For the IMs A = [K,L, {aki,lj}] and B = [P,Q, {bpr,qs}] the usual matrix operations
“addition” and “multiplication” are defined, and also the following operations

A+B = [K ∪ P,L ∪Q, {ctu,vw}],
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where

ctu,vw =



aki,lj , if tu = ki ∈ K and vw = lj ∈ L−Q
or tu = ki ∈ K − P and vw = lj ∈ L;

bpr,qs , if tu = pr ∈ P and vw = qs ∈ Q− L
or tu = pr ∈ P −K and vw = qs ∈ Q;

aki,lj + bpr,qs , if tu = ki = pr ∈ K ∩ P
and vw = lj = qs ∈ L ∩Q

0, otherwise

A×B = [K ∩ P,L ∩Q, {ctu,vw}],
where

ctu,vw = aki,lj .bpr,qs , for tu = ki = pr ∈ K ∩ P andvw = lj = qs ∈ L ∩Q;

A.B = [K ∪ (P − L), Q ∪ (L− P ), {ctu,vw}],
where

ctu,vw =



aki,lj , if tu = ki ∈ K and vw = lj ∈ L− P

bpr,qs , if tu = pr ∈ P − L and vw = qs ∈ Q

Σ
lj=Ar∈L∩P

aki,lj .bpr,qs , if tu = ki ∈ K and vw = qs ∈ Q

0, otherwise

The above mathematical apparatus may be applied to the IMs with elements from the sets
{0, 1}, [0,1], or from the class of all predicates, etc. In the first two cases, the operations
“+” and “.” in R will be substituted by “max” and “min”, respectively, and in the third
case - by the operations “∨” and “∧”.

Let E1 and E2 be two universes and let

A = {〈x, µA(x), νA(x)〉|x ∈ E1},
B = {〈x, µB(y), νB(y)〉|y ∈ E2}.

be two IFSs; A - over E1 and B - over E2. We shall define (see [5]):

A×1 B = {〈〈x, y〉, µA(x).µB(y), νA(x).νB(y)〉|〈x, y〉 ∈ E1 × E2},
A×2 B = {〈〈x, y〉, µA(x) + µB(y)− µA(x).µB(y), νA(x).νB(y)〉|〈x, y〉 ∈ E1 × E2},
A×3 B = {〈〈x, y〉, µA(x).µB(y), νA(x) + νB(y)− νA(x).νB(y)〉|〈x, y〉 ∈ E1 × E2},
A×4 B = {〈〈x, y〉,min(µA(x), µB(y)),max(νA(x).νB(y))〉|〈x, y〉 ∈ E1 × E2},
A×5 B = {〈〈x, y〉,max(µA(x), µB(y)),min(νA(x).νB(y))〉|〈x, y〉 ∈ E1 × E2}.

We must note that A×iB is an IFS, but it is an IFS over the universe E1×E2, where “×i”
is one of the five Cartesian products above and “×” is the classical Cartesian product on
ordinary sets (E1 and E2).

Let X and Y are arbitrary finite non-empty sets. IFR is an IFS R ⊂ X×Y of the form:

R = {〈〈x, y〉, µR(x, y), νR(x, y)〉|x ∈ X & y ∈ Y },
where µR : X × Y → [0, 1], νR : X × Y → [0, 1] are the degrees of membership and non-
membership as the ordinary IFSs or degrees of validity and non-validity of the relation R;
and for every 〈x, y〉 ∈ X × Y :

0 ≤ µR(x, y) + νR(x, y) ≤ 1.
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3 Main results

Let IFRo(X, Y ) be the set of all IFRs over X × Y , where X = {x1, x2, . . . , xm} and Y =
{y1, y2, . . . , yn} are fixed finite sets (universes), × is the ordinary Cartesian product and
o ∈ {×1,×2, ...,×5}. Therefore, the set R ∈ IFRo(X, Y ) can be represented in the form:

y1 . . . yn
x1 〈µ(x1, y1), ν(x1, y1)〉 . . . 〈µ(x1, y1), ν(x1, y1)〉
x2 〈µ(x1, y1), ν(x1, y1)〉 . . . 〈µ(x1, y1), ν(x1, y1)〉
... . . .
xm 〈µ(x1, y1), ν(x1, y1)〉 . . . 〈µ(x1, y1), ν(x1, y1)〉

This IM-representation allows the graphical representation of the elements of R and their
degrees of membership and non-membership. Moreover, different universes can be used
when different operations over IFRs have to be defined. Let R ∈ IFRo(X1, Y1) and S ∈
IFRo(X2, Y2), where X1, Y1, X2 and Y2 are fixed finite sets. Then operations “∪ ” and “∩ ”
can be defined (cf. [5]), as follows

R ∪ S ∈ IFRo(X1 ∪X2, Y1 ∪ Y2)

and R ∪ S has the form

y1 . . . yN
x1 〈µ(x1, y1), ν(x1, y1)〉 . . . 〈µ(x1, yN), ν(x1, yN)〉
x2 〈µ(x2, y1), ν(x2, y1)〉 . . . 〈µ(x2, yN), ν(x2, yN)〉
...
xM 〈µ(xM , y1), ν(xM , y1)〉 . . . 〈µ(xM , yN), ν(xM , yN)〉

where
X1 ∪X2 = {x1, x2, . . . , xM} and Y1 ∪ Y2 = {y1, y2, . . . , yN}, and

〈µ(xi, yj), ν(xi, yj)〉 =



〈µ(x′a, y
′
b), ν(x′a, y

′
b)〉,

if xi = x′a ∈ X1 and yj = y′b ∈ Y1 − Y2

or xi = x′a ∈ X1 −X2 and yj = y′b ∈ Y1

〈µ(x′′c , y
′′
d), ν(x′′c , y

′′
d)〉,

if xi = x′′c ∈ X2 and yj = y′′d ∈ Y2 − Y1

or xi = x′′c ∈ X2 −X1 and yj = y′′d ∈ Y2

〈max(µ(x′, y′), µ(x′′, y′′)),min(ν(x′, y′), ν(x′′, y′′))〉,
if xi = x′a = x′′c ∈ X1 ∩X2 and
yj = y′b = y′′d ∈ Y1 ∩ Y2

0, otherwise

R ∩ S ∈ IFRo(X1 ∩X2, Y1 ∩ Y2)
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and for an arbitrary matrix-element of the new IM is valid:

〈µ(xi, yj), ν(xi, yj)〉 =



〈µ(x′a, y
′
b), ν(x′a, y

′
b)〉,

if xi = x′a ∈ X1 and yj = y′b ∈ Y1 − Y2

or xi = x′a ∈ X1 −X2 and yj = y′b ∈ Y1

〈µ(x′′c , y
′′
d), ν(x′′c , y

′′
d)〉,

if xi = x′′c ∈ X2 and yj = y′′d ∈ Y2 − Y1

or xi = x′′c ∈ X2 −X1 and yj = y′′d ∈ Y2

〈min(µ(x′, y′), µ(x′′, y′′)),max(ν(x′, y′), ν(x′′, y′′))〉,
if xi = x′a = x′′c ∈ X1 ∩X2 and
yj = y′b = y′′d ∈ Y1 ∩ Y2

0, otherwise

Let the oriented graph G = (V,A) be given, where V is a set of vertices and A is a set
of arcs. Every graph arc connects two graph vertices (see, e.g., [8]).

In [5, 9] an approach for introducing of an IFG is given. Here we will modify it in two
directions on the basis of some ideas generated from IFS-theoretical and from IFS-decision
making (see, e.g, [7]) points of view. We shall start with the oldest version of the concept.

Let operation × denote the standard Cartesian product operation, while operation o ∈
{×1,×2, . . . ,×5}.

Following [9] we shall note that the set

G∗ = {〈〈x, y〉, µG(x, y), νG(x, y)〉 | 〈x, y〉 ∈ V × V }

is called an o-IFG (or briefly, an IFG) if the functions µG : V × V → [0, 1] and νG :
V × V → [0, 1] define the respective degrees of membership and non-membership of the
element 〈x, y〉 ∈ V × V . These functions have the forms of the corresponding components
of the o-Cartesian product over IFSs, and for all 〈x, y〉 ∈ V × V :

0 ≤ µG(x, y) + νG(x, y) ≤ 1.

This approach supposes that the given set V and the operation o are choised and fixed
previously and they will be used without changes.

On the other hand, following the IFS-interpretations in decision making, we can con-
struct set V and values of functions µG and νG in the current time, e.g., on the basis of
expert knowledge and we can change their forms on the next steps of the process of IFG’s
use.

Now, we shall introduce a definition of a new type of an IFG.
Let E be an universe, containing fixed graph-vertices and let V ⊂ E be an fixed set. For

it, we construct the IFS
V = {〈x, µV (x), νV (x)〉|x ∈ E},

where functions µV : E → [0, 1] and νV : E → [0, 1] determine the degree of membership
and the degree of non-membership to set V of the element (vertex) x ∈ E, respectively, and
for every x ∈ E:

0 ≤ µV (x) + νV (x) ≤ 1.
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Now, we shall use the idea for an IFS over universe that is an IFS over another universe
(see [5]) and will define: the set

G∗ = {〈〈x, y〉, µG(x, y), νG(x, y)〉 | 〈x, y〉 ∈ E × E}

is called an o-Generalized IFG (or briefly, an GIFG) if the functions µG : V ×V → [0, 1] and
νG : V ×V → [0, 1] define the respective degrees of membership and non-membership of the
element (the graph arc) 〈x, y〉 ∈ V × V . As above, these functions have the forms of the
corresponding components of the o-Cartesian product over IFSs, and for all 〈x, y〉 ∈ V ×V :

0 ≤ µG(x, y) + νG(x, y) ≤ 1.

Let us note by card(X) the cardinality of set X.
We must note that in the present case (for instance of the two above cases) card(V ) =

card(E), i.e., the cardinality of the graph vertices set can be very large, that is not suitable
for real applications. By this reason, by analogy with [10], we can use (α, β)-level operator
Nβ
α , defined by

Nβ
α (V ) = {〈x, µV (x), νV (x)〉|µV (x) ≥ α, νV (x) ≤ β, x ∈ E}.

Therefore,
card(V ) ≥ card(Nβ

α (V )).

4 Conclusion

In later research the authors plan to study in more detail the properties of these new graphs
and essentially, their IM-properties, thus generalizing standard graphs.
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