ON A GENERALIZATION OF INTUITIONISTIC FUZZY GRAPHS Anthony Shannon ${ }^{1,2}$ and Krassimir Atanassov ${ }^{3}$
${ }^{1}$ KvB Institute of Technology, North Sydney, NSW 2060, Australia,
${ }^{2}$ Warrane College, UNSW, P.O. Box 123, Kensington, NSW 1465, Australia.
tony@warrane.unsw.edu.au
${ }^{3}$ CLBME - Bulgarian Academy of Sciences, P.O.Box 12, Sofia- 1113, Bulgaria, krat@bas.bg

1 Introduction

The concept of an Intuitionistic Fuzzy Graph (IFG) was introduced in 1994 in [9]. It was subsequently an object of some extensions (see [4, 10, 6]), representations (see [2, 3, 5]) and applications (see [5]).

Here we discuss a new generalization of the IFGs, using as a basis the concepts of Intuitionistic Fuzzy Sets (IFSs), Intuitionistic Fuzzy Relations (IFRs) and Index Matrices (IMs). All necessary definitions are collected in [5]. We shall introduce only some of the basic concepts.

2 Some necessary definitions

Let a set E be fixed. An IFS A in E is an object of the following form:

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ determine the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1 .
$$

Let I be a fixed set of indices and \mathcal{R} be the set of all real numbers. By an IM with index sets K and $L(K, L \subset I)$ we will mean the object (see [1]):

$$
\left[K, L,\left\{a_{k_{i}, l_{j}}\right\}\right] \equiv \begin{array}{c|cccc}
& l_{1} & l_{2} & \ldots & l_{n} \\
\hline k_{1} & a_{k_{1}, l_{1}} & a_{k_{1}, l_{2}} & \ldots & a_{k_{1}, l_{n}} \\
k_{2} & a_{k_{2}, l_{1}} & a_{k_{2}, l_{2}} & \ldots & a_{k_{2}, l_{n}} \\
\vdots & & & & \\
& k_{m} & a_{k_{m}, l_{1}} & a_{k_{m}, l_{2}} & \ldots \\
a_{k_{m}, l_{n}}
\end{array}
$$

where $K=\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}, L=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$, for $1 \leq i \leq m$, and for $1 \leq j \leq n: a_{k_{i}, l_{j}} \in$ \mathcal{R}. For the IMs $A=\left[K, L,\left\{a_{k_{i}, l_{j}}\right\}\right]$ and $B=\left[P, Q,\left\{b_{p_{r}, q_{s}}\right\}\right]$ the usual matrix operations "addition" and "multiplication" are defined, and also the following operations

$$
A+B=\left[K \cup P, L \cup Q,\left\{c_{t_{u}, v_{w}}\right\}\right],
$$

where

$$
c_{t_{u}, v_{w}}=\left\{\begin{array}{ll}
a_{k_{i}, l_{j}}, & \text { if } t_{u}=k_{i} \in K \text { and } v_{w}=l_{j} \in L-Q \\
& \text { or } t_{u}=k_{i} \in K-P \text { and } v_{w}=l_{j} \in L ; \\
b_{p_{r}, q_{s}}, & \text { if } t_{u}=p_{r} \in P \text { and } v_{w}=q_{s} \in Q-L \\
a_{k_{i}, l_{j}}+b_{p_{r}, q_{s}}, & \text { if } t_{u}=p_{r} \in P-K \text { and } v_{w}=p_{s} \in Q ; \\
0, & \text { and } v_{w}=l_{j}=q_{s} \in L \cap Q \\
0, & \text { otherwise }
\end{array}\right\}
$$

where

$$
\begin{gathered}
c_{t_{u}, v_{w}}=a_{k_{i}, l_{j}} \cdot b_{p_{r}, q_{s}}, \text { for } t_{u}=k_{i}=p_{r} \in K \cap P \text { and } v_{w}=l_{j}=q_{s} \in L \cap Q ; \\
A \cdot B=\left[K \cup(P-L), Q \cup(L-P),\left\{c_{t_{u}, v_{w}}\right\}\right]
\end{gathered}
$$

where

$$
c_{t_{u}, v_{w}}= \begin{cases}a_{k_{i}, l_{j}}, & \text { if } t_{u}=k_{i} \in K \text { and } v_{w}=l_{j} \in L-P \\ b_{p_{r}, q_{s}}, & \text { if } t_{u}=p_{r} \in P-L \text { and } v_{w}=q_{s} \in Q \\ \sum_{l_{j}=A_{r} \in L \cap P}^{\Sigma} a_{k_{i}, l_{j}} \cdot b_{p_{r}, q_{s}}, & \text { if } t_{u}=k_{i} \in K \text { and } v_{w}=q_{s} \in Q \\ 0, & \text { otherwise }\end{cases}
$$

The above mathematical apparatus may be applied to the IMs with elements from the sets $\{0,1\},[0,1]$, or from the class of all predicates, etc. In the first two cases, the operations "+" and "." in \mathcal{R} will be substituted by "max" and "min", respectively, and in the third case - by the operations " \vee " and " \wedge ".

Let E_{1} and E_{2} be two universes and let

$$
\begin{aligned}
& A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E_{1}\right\}, \\
& B=\left\{\left\langle x, \mu_{B}(y), \nu_{B}(y)\right\rangle \mid y \in E_{2}\right\} .
\end{aligned}
$$

be two IFSs; A - over E_{1} and B - over E_{2}. We shall define (see [5]):

$$
\begin{aligned}
& A \times_{1} B=\left\{\left\langle\langle x, y\rangle, \mu_{A}(x) \cdot \mu_{B}(y), \nu_{A}(x) \cdot \nu_{B}(y)\right\rangle \mid\langle x, y\rangle \in E_{1} \times E_{2}\right\}, \\
& A \times_{2} B=\left\{\left\langle\langle x, y\rangle, \mu_{A}(x)+\mu_{B}(y)-\mu_{A}(x) \cdot \mu_{B}(y), \nu_{A}(x) \cdot \nu_{B}(y)\right\rangle \mid\langle x, y\rangle \in E_{1} \times E_{2}\right\}, \\
& A \times_{3} B=\left\{\left\langle\langle x, y\rangle, \mu_{A}(x) \cdot \mu_{B}(y), \nu_{A}(x)+\nu_{B}(y)-\nu_{A}(x) \cdot \nu_{B}(y)\right\rangle \mid\langle x, y\rangle \in E_{1} \times E_{2}\right\}, \\
& A \times_{4} B=\left\{\left\langle\langle x, y\rangle, \min \left(\mu_{A}(x), \mu_{B}(y)\right), \max \left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid\langle x, y\rangle \in E_{1} \times E_{2}\right\}, \\
& A \times_{5} B=\left\{\left\langle\langle x, y\rangle, \max \left(\mu_{A}(x), \mu_{B}(y)\right), \min \left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid\langle x, y\rangle \in E_{1} \times E_{2}\right\} .
\end{aligned}
$$

We must note that $A \times{ }_{i} B$ is an IFS, but it is an IFS over the universe $E_{1} \times E_{2}$, where " \times " is one of the five Cartesian products above and " \times " is the classical Cartesian product on ordinary sets (E_{1} and E_{2}).

Let X and Y are arbitrary finite non-empty sets. IFR is an IFS $R \subset X \times Y$ of the form:

$$
R=\left\{\left\langle\langle x, y\rangle, \mu_{R}(x, y), \nu_{R}(x, y)\right\rangle \mid x \in X \& y \in Y\right\},
$$

where $\mu_{R}: X \times Y \rightarrow[0,1], \nu_{R}: X \times Y \rightarrow[0,1]$ are the degrees of membership and nonmembership as the ordinary IFSs or degrees of validity and non-validity of the relation R; and for every $\langle x, y\rangle \in X \times Y$:

$$
0 \leq \mu_{R}(x, y)+\nu_{R}(x, y) \leq 1
$$

3 Main results

Let $I F R_{o}(X, Y)$ be the set of all IFRs over $X \times Y$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=$ $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ are fixed finite sets (universes), \times is the ordinary Cartesian product and $o \in\left\{\times_{1}, \times_{2}, \ldots, \times_{5}\right\}$. Therefore, the set $R \in I F R_{o}(X, Y)$ can be represented in the form:

	y_{1}	\ldots	y_{n}
x_{1}	$\left\langle\mu\left(x_{1}, y_{1}\right), \nu\left(x_{1}, y_{1}\right)\right\rangle$	\ldots	$\left\langle\mu\left(x_{1}, y_{1}\right), \nu\left(x_{1}, y_{1}\right)\right\rangle$
x_{2}	$\left\langle\mu\left(x_{1}, y_{1}\right), \nu\left(x_{1}, y_{1}\right)\right\rangle$	\ldots	$\left\langle\mu\left(x_{1}, y_{1}\right), \nu\left(x_{1}, y_{1}\right)\right\rangle$
\vdots	\ldots		
x_{m}	$\left\langle\mu\left(x_{1}, y_{1}\right), \nu\left(x_{1}, y_{1}\right)\right\rangle$	\ldots	$\left\langle\mu\left(x_{1}, y_{1}\right), \nu\left(x_{1}, y_{1}\right)\right\rangle$

This IM-representation allows the graphical representation of the elements of R and their degrees of membership and non-membership. Moreover, different universes can be used when different operations over IFRs have to be defined. Let $R \in I F R_{o}\left(X_{1}, Y_{1}\right)$ and $S \in$ $I F R_{o}\left(X_{2}, Y_{2}\right)$, where X_{1}, Y_{1}, X_{2} and Y_{2} are fixed finite sets. Then operations " \cup " and " \cap " can be defined (cf. [5]), as follows

$$
R \cup S \in I F R_{o}\left(X_{1} \cup X_{2}, Y_{1} \cup Y_{2}\right)
$$

and $R \cup S$ has the form

	y_{1}	\ldots	y_{N}
x_{1}	$\left\langle\mu\left(x_{1}, y_{1}\right), \nu\left(x_{1}, y_{1}\right)\right\rangle$	\ldots	$\left\langle\mu\left(x_{1}, y_{N}\right), \nu\left(x_{1}, y_{N}\right)\right\rangle$
x_{2}	$\left\langle\mu\left(x_{2}, y_{1}\right), \nu\left(x_{2}, y_{1}\right)\right\rangle$	\ldots	$\left\langle\mu\left(x_{2}, y_{N}\right), \nu\left(x_{2}, y_{N}\right)\right\rangle$
\vdots			
x_{M}	$\left\langle\mu\left(x_{M}, y_{1}\right), \nu\left(x_{M}, y_{1}\right)\right\rangle$	\ldots	$\left\langle\mu\left(x_{M}, y_{N}\right), \nu\left(x_{M}, y_{N}\right)\right\rangle$

where

$$
\begin{gathered}
X_{1} \cup X_{2}=\left\{x_{1}, x_{2}, \ldots, x_{M}\right\} \text { and } Y_{1} \cup Y_{2}=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}, \text { and } \\
\left\langle\mu\left(x_{i}, y_{j}\right), \nu\left(x_{i}, y_{j}\right)\right\rangle=\left\{\begin{array}{c}
\left\langle\mu\left(x_{a}^{\prime}, y_{b}^{\prime}\right), \nu\left(x_{a}^{\prime}, y_{b}^{\prime}\right)\right\rangle, \\
\text { if } x_{i}=x_{a}^{\prime} \in X_{1} \text { and } y_{j}=y_{b}^{\prime} \in Y_{1}-Y_{2} \\
\text { or } x_{i}=x_{a}^{\prime} \in X_{1}-X_{2} \text { and } y_{j}=y_{b}^{\prime} \in Y_{1} \\
\left\langle\mu\left(x_{c}^{\prime \prime}, y_{d}^{\prime \prime}\right), \nu\left(x_{c}^{\prime \prime}, y_{d}^{\prime \prime}\right)\right\rangle, \\
\text { if } x_{i}=x_{c}^{\prime \prime} \in X_{2} \text { and } y_{j}=y_{d}^{\prime \prime} \in Y_{2}-Y_{1} \\
\text { or } x_{i}=x_{c}^{\prime \prime} \in X_{2}-X_{1} \text { and } y_{j}=y_{d}^{\prime \prime} \in Y_{2} \\
\left\langle\max \left(\mu\left(x^{\prime}, y^{\prime}\right), \mu\left(x^{\prime \prime}, y^{\prime \prime}\right)\right), \min \left(\nu\left(x^{\prime}, y^{\prime}\right), \nu\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)\right\rangle, \\
\text { if } x_{i}=x_{a}^{\prime}=x_{c}^{\prime \prime} \in X_{1} \cap X_{2} \text { and } \\
y_{j}=y_{b}^{\prime}=y_{d}^{\prime \prime} \in Y_{1} \cap Y_{2} \\
0, \text { otherwise }
\end{array}\right. \\
R \cap S \in I F R_{o}\left(X_{1} \cap X_{2}, Y_{1} \cap Y_{2}\right)
\end{gathered}
$$

and for an arbitrary matrix-element of the new IM is valid:

$$
\left\langle\mu\left(x_{i}, y_{j}\right), \nu\left(x_{i}, y_{j}\right)\right\rangle=\left\{\begin{array}{l}
\left\langle\mu\left(x_{a}^{\prime}, y_{b}^{\prime}\right), \nu\left(x_{a}^{\prime}, y_{b}^{\prime}\right)\right\rangle, \\
\text { if } x_{i}=x_{a}^{\prime} \in X_{1} \text { and } y_{j}=y_{b}^{\prime} \in Y_{1}-Y_{2} \\
\quad \text { or } x_{i}=x_{a}^{\prime} \in X_{1}-X_{2} \text { and } y_{j}=y_{b}^{\prime} \in Y_{1} \\
\left\langle\mu\left(x_{c}^{\prime \prime}, y_{d}^{\prime \prime}\right), \nu\left(x_{c}^{\prime \prime}, y_{d}^{\prime \prime}\right)\right\rangle, \\
\text { if } x_{i}=x_{c}^{\prime \prime} \in X_{2} \text { and } y_{j}=y_{d}^{\prime \prime} \in Y_{2}-Y_{1} \\
\text { or } x_{i}=x_{c}^{\prime \prime} \in X_{2}-X_{1} \text { and } y_{j}=y_{d}^{\prime \prime} \in Y_{2} \\
\left\langle\min \left(\mu\left(x^{\prime}, y^{\prime}\right), \mu\left(x^{\prime \prime}, y^{\prime \prime}\right)\right), \max \left(\nu\left(x^{\prime}, y^{\prime}\right), \nu\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)\right\rangle, \\
\text { if } x_{i}=x_{a}^{\prime}=x_{c}^{\prime \prime} \in X_{1} \cap X_{2} \text { and } \\
y_{j}=y_{b}^{\prime}=y_{d}^{\prime \prime} \in Y_{1} \cap Y_{2} \\
0, \text { otherwise }
\end{array}\right.
$$

Let the oriented graph $G=(V, A)$ be given, where V is a set of vertices and A is a set of arcs. Every graph arc connects two graph vertices (see, e.g., [8]).

In [5, 9] an approach for introducing of an IFG is given. Here we will modify it in two directions on the basis of some ideas generated from IFS-theoretical and from IFS-decision making (see, e.g, [7]) points of view. We shall start with the oldest version of the concept.

Let operation \times denote the standard Cartesian product operation, while operation $o \in$ $\left\{\times_{1}, \times_{2}, \ldots, \times_{5}\right\}$.

Following [9] we shall note that the set

$$
G^{*}=\left\{\left\langle\langle x, y\rangle, \mu_{G}(x, y), \nu_{G}(x, y)\right\rangle \mid\langle x, y\rangle \in V \times V\right\}
$$

is called an o-IFG (or briefly, an IFG) if the functions $\mu_{G}: V \times V \rightarrow[0,1]$ and $\nu_{G}:$ $V \times V \rightarrow[0,1]$ define the respective degrees of membership and non-membership of the element $\langle x, y\rangle \in V \times V$. These functions have the forms of the corresponding components of the o-Cartesian product over IFSs, and for all $\langle x, y\rangle \in V \times V$:

$$
0 \leq \mu_{G}(x, y)+\nu_{G}(x, y) \leq 1
$$

This approach supposes that the given set V and the operation o are choised and fixed previously and they will be used without changes.

On the other hand, following the IFS-interpretations in decision making, we can construct set V and values of functions μ_{G} and ν_{G} in the current time, e.g., on the basis of expert knowledge and we can change their forms on the next steps of the process of IFG's use.

Now, we shall introduce a definition of a new type of an IFG.
Let E be an universe, containing fixed graph-vertices and let $V \subset E$ be an fixed set. For it, we construct the IFS

$$
V=\left\{\left\langle x, \mu_{V}(x), \nu_{V}(x)\right\rangle \mid x \in E\right\}
$$

where functions $\mu_{V}: E \rightarrow[0,1]$ and $\nu_{V}: E \rightarrow[0,1]$ determine the degree of membership and the degree of non-membership to set V of the element (vertex) $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{V}(x)+\nu_{V}(x) \leq 1
$$

Now, we shall use the idea for an IFS over universe that is an IFS over another universe (see [5]) and will define: the set

$$
G^{*}=\left\{\left\langle\langle x, y\rangle, \mu_{G}(x, y), \nu_{G}(x, y)\right\rangle \mid\langle x, y\rangle \in E \times E\right\}
$$

is called an o-Generalized IFG (or briefly, an GIFG) if the functions $\mu_{G}: V \times V \rightarrow[0,1]$ and $\nu_{G}: V \times V \rightarrow[0,1]$ define the respective degrees of membership and non-membership of the element (the graph arc) $\langle x, y\rangle \in V \times V$. As above, these functions have the forms of the corresponding components of the o-Cartesian product over IFSs, and for all $\langle x, y\rangle \in V \times V$:

$$
0 \leq \mu_{G}(x, y)+\nu_{G}(x, y) \leq 1 .
$$

Let us note by $\operatorname{card}(X)$ the cardinality of set X.
We must note that in the present case (for instance of the two above cases) $\operatorname{card}(V)=$ $\operatorname{card}(E)$, i.e., the cardinality of the graph vertices set can be very large, that is not suitable for real applications. By this reason, by analogy with [10, we can use (α, β)-level operator N_{α}^{β}, defined by

$$
N_{\alpha}^{\beta}(V)=\left\{\left\langle x, \mu_{V}(x), \nu_{V}(x)\right\rangle \mid \mu_{V}(x) \geq \alpha, \nu_{V}(x) \leq \beta, x \in E\right\} .
$$

Therefore,

$$
\operatorname{card}(V) \geq \operatorname{card}\left(N_{\alpha}^{\beta}(V)\right)
$$

4 Conclusion

In later research the authors plan to study in more detail the properties of these new graphs and essentially, their IM-properties, thus generalizing standard graphs.

References

[1] K. Atanassov, Generalized index matrices, Compt. Rend. de l'Academie Bulgare des Sciences, Vol.40, 1987, No 11, 15-18.
[2] Atanassov K., Index matrix representation of the intuitionistic fuzzy graphs, Fifth Scientific Session of the Mathematical Foundations of Artificial Intelligence Seminar, Sofia, Oct. 5, 1994, Preprint MRL-MFAIS-10-94, 36-41.
[3] Atanassov K., On intuitionistic fuzzy graphs and intuitionistic fuzzy relations, Proceedings of the VI IFSA World Congress, Sao Paulo, Brazil, July 1995, Vol. 1, 551-554.
[4] Atanassov K., Temporal intuitionistic fuzzy graphs, Notes on Intuitionistic Fuzzy Sets, Vol. 4 (1998), No. 4, 59-61.
[5] K. Atanassov, Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin, 1999.
[6] Atanassov, K. On index matrix interpretations of intuitionistic fuzzy graphs. Notes on Intuitionistic Fuzzy Sets, Vol. 8 (2002), No. 4, 73-78.
[7] Atanassov, K., G. Pasi and R. Yager. Intuitionistic fuzzy interpretations of multicriteria multi-person and multi-measurement tool decision making. International Journal of Systems Research, Vol. 36, 2005, No. 14,
[8] Christofides,N., Graph Theory. Academic Press, new York, 1975.
[9] Shannon A., Atanassov K., A first step to a theory of the intuitionistic fuzzy graphs, Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28- 30, 1994, 59-61.
[10] Shannon A., Atanassov K., Intuitionistic fuzzy graphs from $\alpha-, \beta$ - and (α, β)-levels, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 1, 1995, 32-35.

