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Abstract: In Generalized nets with characteristics of the places (GNCP) the places can receive
characteristics and keep information about the flow of the tokens in the net. The class of all GNCP
ΣCP is a conservative extension of the class of all Generalized nets Σ. In this paper we study the
connection between GNCP and the Intuitionistic fuzzy generalized nets of type 1 (IFGN1) and
type 2 (IFGN2).

It is proved that the functioning and the result of the work of every GNCP can be represented
by IFGN1 and IFGN2. The opposite statement is also proved to be true.
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1 Introduction

Generalized nets with characteristics of the places (GNCP) are defined in [1]. Again there it
is proved that ΣCP – the class of all GNCP – is a conservative extension of the class Σ. In a
GNCP, places can receive characteristics related to the number of tokens of different types that
have entered them, the time moments when the tokens entered the places and other information
about the flow of the tokens into the net. The formal definition of a GNCP is:

E = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X, Y,Φ,Ψ, b〉〉

where
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(a) A is the set of transitions of the net;
(b) πA is a function giving the priorities of the transitions, i.e., πA : A → N , where N =

{0, 1, 2, ...};
(c) πL is a function giving the priorities of the places, i.e., πL : L→ N , where L is the set of

all GN-places;
(d) c is a function giving the capacities of the places, i.e., c : L→ N ;
(e) f is a function that calculates the truth values of the predicates of the transition’s condi-

tions;
(f) function

θ1 = ∪
Z∈A

θZ1

where θZ1 is a function giving the next time moment when the transition Z can be activated, i.e.,
θZ1 (t) = t′, where t = pr3Z, t

′ ∈ [T, T + t∗] and for 1 ≤ i ≤ n, pri{x1, x2, ..., xn} = xi.
The value of this function is calculated at the moment when the transition terminates its current
functioning;

(g) function

θ2 = ∪
Z∈A

θZ2

and θZ2 is a function giving the duration of the active state of a given transition Z, i.e., θZ2 (t) = t′,
where t = pr3Z ∈ [T, T + t∗] and t′ ≥ 0. The value of this function is calculated at the moment
when the transition starts functioning;

(h) K is the set of the GN’s tokens;
(i) πK is a function giving the priorities of the tokens, i.e., πK : K → N ;
(j) θK is a function giving the time-moment when a given token can enter the net, i.e., θK(α) =

t, where α ∈ K and t ∈ [T, T + t∗];
(k) T is the time moment when the GN starts functioning; this moment is determined with

respect to a fixed (global) time scale;
(l) t0 is an elementary time-step, related to the fixed (global) time scale;
(m) t∗ is the duration of the GN functioning;
(n) X is a function which assigns initial characteristics to every token when it enters input

place of the net. If α ∈ K, then it enters the GN with initial characteristic xα0 ;
(o) Y is function which assigns initial characteristics to the places;
(p) Φ is a characteristic function that assigns new characteristics to every token when it makes

the transfer from an input to an output place of a given transition. If α ∈ K, then it, entering an
output place of some GN-transition and having as current characteristic xαcu, obtains the next
characteristic xαcu+1;

(q) Ψ is a characteristic function that assigns new characteristics to the places when a token
enters the place (this is the new component which cannot be find in the definition of the ordinary
GN);

(r) b is a function giving the maximum number of characteristics a given token can receive,
i.e., b : K → N .
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The algorithms for the functioning of transition and GNCP are the same as in the standard
GNs (see[2]). The only difference is that now the characteristic function Ψ assigns characteristic
to the output places for every token that has been transferred. For the definition of GN transition
and the algorithms for functioning of transition and GN the reader can refer to [2, 3]. Previously,
the idea of assigning characteristics to the places has been known from the Intuitionistic fuzzy
generalized nets of type 2 (IFGN2). An IFGN2 has the form:

E = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X,Φ〉〉,

where A is the set of transitions which have the ordinary GN form but the capacities of the arcs
given by the index matrix M are real numbers. The function c which in the ordinary GNs gives
the capacities of the places in non-negative integers now assigns a real value to each place. This
real number corresponds to the volume of the place - that is the quantity of matter it can collect.
The function f which calculates the truth values of the predicates has the form:

f(ri,j) = 〈µ(ri,j), ν(ri,j)〉,

where µ(ri,j) is the degree of truth of the predicate ri,j and ν(ri,j) is the degree of falsity. µ(ri,j) ∈
[0, 1] and ν(ri,j) ∈ [0, 1] satisfy the condition:

µ(ri,j) + ν(ri,j) ≤ 1.

Here the tokens are some kind of quantities that flow into the net and do not have initial or
other characteristics. Instead the function Φ assigns to every place characteristics - the quantities
of the tokens from each type in the place. For the algorithm for transition’s functioning in IFGN2
the reader can refer to [4].

In Intuitionistic fuzzy generalized nets of type 1 (IFGN1), the function f which evaluates the
predicates of the transitions has the same form as in IFGN2. The tokens, however, are regarded
in the classical GN sense and they obtain characteristics. Also, the capacities of the arcs, i.e.
the elements of the index matrix M are non-negative integers, whereas in IFGN2 they are non-
negative real numbers. For the algorithm of functioning of the transitions in IFGN1 the reader
can refer to [4].

In [2], it is proved that ΣIFGN1 ≡ Σ and ΣIFGN2 ≡ Σ. The same result is proved in [1] for
the class ΣCP , i.e. ΣCP ≡ Σ. From all said, it is clear that GNCP and IFGN2 are closely related.
In particular, the places in both types can receive characteristics. However, there are significant
differences in the definition of the two types and in the way they function. In GNCP the tokens
obtain characteristics while in IFGN2 they do not. Also, the capacities of the arcs in IFGN2 are
real numbers, while in GNCP they are non-negative integers. The function f that determines the
truth values of the predicates in GNCP has values in the set {“false”, “true”} while in IFGN2
its values are ordered couples of real numbers 〈µ(ri,j), ν(ri,j)〉, µ(ri,j), ν(ri,j) ∈ [0, 1] which, as
mentioned above, satisfy the condition µ(ri,j) +ν(ri,j) ≤ 1. The function c which in the ordinary
GNs gives the capacities of the places in non-negative integers now assigns a non-negative real
value to each place. It is interesting to study in details the connection between the class ΣCP and
the classes ΣIFGN2 and ΣIFGN1 and to see how we can represent the work of a GNCP in terms
of IFGN1 and IFGN2.
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2 Connection between ΣCP and ΣIFGN1

To see how the class ΣCP is related to ΣIFGN1 we will first show how it is possible to represent
an arbitrary IFGN1 in terms of GNCP.

Theorem 1 The functioning and the result of work of every IFGN1 can be represented by a
GNCP.

Proof: Let a IFGN1 G be given.

G = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X,Φ, b〉〉 (1)

We will construct a GNCP E which represents the functioning and the result of the work of
G. The new net has the following components:

E = 〈〈A, πA, πL, c, f ∗, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X, Y,Φ,Ψ, b〉〉 (2)

All components of E with the exception of f ∗ and the function Ψ are the same as in G. Be-
fore we define f ∗ we shall note that in the general algorithm for transition functioning in IFGN1
(see [4]) the transfer of tokens from input to output places is determined by one of the following
conditions:

C1 µ(ri,j) = 1, ν(ri,j) = 0 (the case of ordinary GN)

C2 µ(ri,j) >
1
2

(> ν(ri,j))

C3 µ(ri,j) ≥ 1
2

(≥ ν(ri,j))

C4 µ(ri,j) > ν(ri,j)

C5 µ(ri,j) ≥ ν(ri,j)

C6 µ(ri,j) > 0

C7 ν(ri,j) < 1 , i.e. at least π(ri,j) > 0, where π(ri,j) = 1−µ(ri,j)− ν(ri,j) is the degree of
uncertainty(indeterminancy).

The condition for transfer of the tokens which will be used is determined for every transition
before the firing of the net. In order to preserve this condition in E, where the function f ∗ assigns
to the predicates values from the set {0, 1}, for the condition C1 we define f ∗ in the following
way:

C1∗ f ∗(ri,j) = bpr1f(ri,j)c.
where bxc is the floor function which maps a real number x to the largest integer smaller or equal
to x.

Similarly, in the other cases we define f ∗(ri,j) as follows:
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C2∗ f ∗(ri,j) =

{
1 , if µ(ri,j) >

1
2

0 , otherwise

C3∗ f ∗(ri,j) =

{
1 , if µ(ri,j) ≥ 1

2

0 , otherwise

C4∗ f ∗(ri,j) =

{
1 , if µ(ri,j) > ν(ri,j)

0 , otherwise

C5∗ f ∗(ri,j) =

{
1 , if µ(ri,j) ≥ ν(ri,j)

0 , otherwise

C6∗ f ∗(ri,j) =

{
1 , if µ(ri,j) > 0

0 , otherwise

C7∗ f ∗(ri,j) =

{
1 , if ν(ri,j) < 1

0 , otherwise

Since in IFGN1 the places do not obtain characteristics we can consider that the characteristic
functions Y and Ψ of E does not assign any charcteristics to the places, i.e. Ψ(l) = ∅, Y (l) = ∅
for all places l. Although the GNCP E has the same graphic structure as G, for every transition
Zi ∈ pr1pr1G we will denote with Z∗i its corresponding transition in E (that is a transition with
the same components as Zi). Let now Z ∈ pr1pr1G and Z∗ ∈ pr1pr1E be two corresponding
transitions. To prove that the GNCP E reperesents the work of G we will use the theorem for
the completeness of the GN transitions which states that every GN can be constructed only from
the set of its transitions and operations union, concatenation and iteration defined over transitions
(see [3]). Both transitions have the same number of input and output places, the same time
components, the same index matrices with predicates and capacities of the arcs. Let α ∈ pr1pr2G
and α∗ ∈ pr1pr2E be two tokens with equal characteristics that are in two corresponding input
places li ∈ pr1Z and l∗i ∈ pr1Z

∗. Depending on the execution of the operator for permission
or prohibition of tokens’ splitting the token α will be transferred either to all permitted output
places or to the place with the highest priority among all output places. The transfer of α is
determined by one of the conditions C1, C2, ..., C7. Let the conditions allow the transfer to
output place lj (the case where splitting of tokens is allowed is analogous). At the same time
α∗ in place l∗i will be transferred to the output place l∗j because the function f ∗(ri,j) = 1 if the
corresponding condition for the transfer from li to lj is satisfied. Upon entering l∗j the token α∗

obtains the same characteristic as the token α because the characteristic function Φ is the same
for the two nets. If α can not be transferred to any output places of Z, then the token α∗ also can
not be transferred because of the definition of f ∗. Therefore the two transitions function equally.
Since the corresponding transitions Z and Z∗ are arbitrarily chosen, from the Theorem for the
completeness of the GN transitions it follows that the GNCP E represents the functioning and
result of the work of G. �

Theorem 2 The functioning and the results of the work of every GNCP can be represented by an
IFGN1.

Proof: Let E be a GNCP with components:
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E = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X, Y,Φ,Ψ, b〉〉

We will construct an IFGN1 G which preserves the result of the work of E. Let Z ∈ pr1pr1E
be arbitrary transition with components Z = 〈L′, L′′, t1, t2, r,M,�〉(see Fig.1)

...

...

...

...

l′1 l -

l′i l -

l′m l -

Z
?

...

...

...

...

l′′1l-

l′′jl-

l′′nl-

Fig. 1.

For every such transition Z we construct a corresponding transition Z∗ with components
Z∗ = 〈L′∗, L′′∗, t1, t2, r∗,M∗,�∗〉(see Fig.2)

...

...

...

...

l′1 l -

l′i l -

l′m l -

Z∗
?

...

...

...

...

l′′1l-

l′′jl-

l′′nl-

lZl--

Fig. 2.

where Z∗ is obtained from Z with the addition of a new place lZ which is input and output for the
transition.

L′∗ = L′ ∪ {lZ}

L′′∗ = L
′′ ∪ {lZ}

We use the same notation for the places in Z and Z∗ to avoid complicating the notation. Both
transitions become active at the same time and have equal durations of their active states. In place
lZ a token αZ will loop and keep the characteristics of the output places of Z. The rest of the
components of Z∗ are defined as follows. If

r = pr5Z = [L′, L′′, {rl′i,l′′j }]

is the IM of the transition’s condition, then

r∗ = pr5Z
∗ = [L′ ∪ {lZ}, L′′ ∪ {lZ}, {r∗l′i,l′′j }]
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where
(∀l′i ∈ L′)(∀l′′j ∈ L′′)(r∗l′i,l′′j = rl′i,l′′j )

(∀l′i ∈ L′)(∀l′′j ∈ L′′)(r∗l′i,lZ = r∗lZ ,l′′j = ”false”),

r∗lZ ,lZ = ”true”;

If
M = pr6Z = [L′, L′′, {ml′i,l

′′
j
}]

has the form of an IM, then

M∗ = pr6Z
∗ = [L′ ∪ {lZ}, L′′ ∪ {lZ}, {m∗l′i,l′′j }],

where
(∀l′i ∈ L′)(∀l′′j ∈ L′′)(m∗l′i,l′′j = ml′i,l

′′
j
),

(∀l′i ∈ L′)(∀l′′j ∈ L′′)(m∗l′i,lZ = m∗lZ ,l′′j = 0),

m∗lZ ,lZ = 1

Let A∗ be the set of all transitions obtained after reapeating the above procedure for all tran-
sitions of E. Let the components of G be

G = 〈〈A∗, π∗A, π∗L, c∗, f, θ1, θ2〉, 〈K∗, π∗K , θ∗K〉, 〈T, t0, t∗〉, 〈X∗,Φ∗, b∗〉〉

where
(∀Z∗i ∈ A∗)(π∗A(Z∗i ) = πA(Zi))

π∗L = πL ∪ π{lZ |Z∈A},

where function π{lZ |Z∈A} determines the priorities of the new places that are elements of set
{lZ |Z ∈ A} and the priorities of the places lZ for every transition Z ∈ A are the minimal among
the priorities of all other places of the transition Z.

c∗ = c ∪ c{lZ |Z∈A},

where function c{lZ |Z∈A} satisfies the equality

c{lZ |Z∈A}(lZ) = 1,

We shall note that if QI is the set of the input places of the GN, then, as it is noted in [3] the
set K can be represented by

K =
⋃
l∈QI

Kl,

where Kl is the set of the GN-tokens that enter the GN through place l. Now,

K∗ = (
⋃
l∈QI

Kl)
⋃
{αZ |Z ∈ A},
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i.e. the set of the tokens of G consists of all tokens of E and all additional tokens in the lZ-places.

π∗K = πK ∪ π{lZ |Z∈A}

where the function π{lZ |Z∈A} determines the priorities of the αZ tokens. The αZ tokens stay in
the lZ places during the entire period of functioning of the net and no other tokens can enter the
lZ places. The αZ tokens should have the lowest priority among all tokens of the net.

θ∗K = θK ∪ θ{lZ |Z∈A},

where θ{lZ |Z∈A} determines that each αZ-token stays in the initial time-moment T in the lZ place.

X∗ = X ∪ {xαZ
0 |Z ∈ A},

where xαZ
0 is the initial characteristic of token αZ and it is a list of all output places for the

transition Z with their initial characteristics:

“〈l′′1 , Y (l′′1)〉, 〈l′′2 , Y (l′′2)〉, · · · 〈l′′n, Y (l′′n)〉”

Φ∗ = Φ′ ∪Ψ∗{lZ |Z∈A},

where the function Ψ∗{lZ |Z∈A} determines the characteristics of the αZ-tokens in the form

Ψ∗{lZ |Z∈A}(αZ) = “{〈l′′j ,Ψ(l
′′

j )〉|l′′j ∈ L′′}”.

The characteristic function Φ∗ assigns to every token αZ the characteristics of the places of the
transition Z of E. The function Φ′ which assigns the same characteristics to the tokens that have
been transferred as the function Φ in E. If we strictly follow the definition of IFGN1, we should
define Φ′(α) = 〈Φ(α), 〈µ(ri,j), ν(ri,j)〉〉. However, in this case the couple 〈µ(ri,j), ν(ri,j〉 =

〈1, 0〉 as this is the only way for the token to be transferred.

b∗ = b ∪ b{αZ |Z∈A}

where the function b{αZ |Z∈A}(α) = ∞ determines the number of characteristics the αZ tokens
can keep.

To prove that the so constructed IFGN1 G represents the funtioning and the results of work of
E let us take an arbitrary pair of corresponding transitions Zi ∈ pr1pr1E and Z∗i ∈ pr1pr1G. Let
α ∈ K and β ∈ K∗ be two tokens of the same type with equal characteristics which are at two
corresponding places of the transitions at some moment of time. Apparently neither of them is αZ
token. From the definition of the transitionZ∗i it is clear that the token β can be transferred to some
output place l′′∗j if and only if the token α can be transferred to the output place l′′j (here l′′∗j and l′′j
are two corresponding output places of the two transitions). The two tokens will receive the same
characteristics because the characteristic functions Φ and Φ′ coincide in all places except the lZ
places. The characteristic funtion Ψ assigns characteristic to the place l′′j . The same characteristic
is assigned to the αZ token. Since the transitions and the tokens were arbitrarily chosen, we can
conclude that G represents the funtioning and the result of work of E. The case where splitting
of tokens is allowed is analogous. �

From the two theorems above it follows

Theorem 3 ΣCP ≡ ΣIFGN1.
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3 Connection between ΣCP and ΣIFGN2

We already pointed out the basic differences between GNCP and IFGN2. Before we show how
we can represent the work of IFGN2 in terms of GNCP and vice versa we need to mention the
general algorithm for transition functioning in IFGN2 proposed in [4]. As in the case of IFGN1,
the transfer of the tokens from input place to output place of a given transition is determined by
one of the following conditions:

C1 µ(ri,j) = 1, ν(ri,j) = 0 (the case of ordinary GN)

C2 µ(ri,j) >
1
2

(> ν(ri,j))

C3 µ(ri,j) ≥ 1
2

(≥ ν(ri,j))

C4 µ(ri,j) > ν(ri,j)

C5 µ(ri,j) ≥ ν(ri,j)

C6 µ(ri,j) > 0

C7 ν(ri,j) < 1 , i.e. at least π(ri,j) > 0,
where π(ri,j) = 1− µ(ri,j)− ν(ri,j) is the degree of uncertainty (indeterminancy).

The condition for transfer of the tokens which will be used is determined for every transition
before the firing of the net. When the condition for transfer is satisfied the token with the highest
priority in the i-th input place will be distributed to j-th output place according to the value of
µ(ri,j). The quantity that remains in the i-th input place corresponds to the degree of falsity
ν(ri,j). Along the arc connecting the i-th input place and the j-th output place remains the rest of
the matter which is given by π(ri,j) = 1− µ(ri,j)− ν(ri,j). This interpretation of the degrees of
truth and falsity of the predicates requires the following restriction to be imposed:∑

j

µ(ri,j) ≤ 1.

First we will prove the following theorem.

Theorem 4 The functioning and the result of the work of every IFGN2 can be represented by a
GNCP.

Proof: Let an IFGN2 G be given.

G = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X,Φ〉〉

We will construct a GNCP E based on G which represents the functioning and the results of the
work of G. Let Z = 〈L′, L′′, t1, t2, r,M,�〉 be arbitrary transition of G. We will construct a
corresponding transition Z∗ = 〈L′, L′′, t1, t2, r,M∗,�〉 which has the same graphic structure as
Z, the same number of input and output places, the same time components, the same predicates
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and the same transition type . The only difference is that all elements of the index matrix M∗

of the capacities of the arcs in Z∗ are ∞. Let A∗ be the set of all transitions obtained from the
transitions of G by the above procedure. Let the GNCP E have the following components:

E = 〈〈A∗, πA∗ , πL, c∗, f ∗, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X, Y,Φ∗,Ψ, b〉〉

The function πA∗ which determines the priorities of the transitions assigns to every transition of
E the priority of its corresponding transition in G: πA∗(Z∗i ) = πA(Zi) for all Z∗i ∈ A∗. The
priorities of the places in E and the functions θ1 and θ2 are also the same. We use the same
notation for them in E. Since the capacities of the places in E must be positive integers, we
define c∗(li) = dc(li)e for all places li ∈ L, where dxe is the ceiling function which maps a real
number x to the smallest integer greater or equal to it. The codomain of the function f ∗ which
determines the degrees of truth and falsity of the predicates in the case of GNCP is the set {0, 1}.
As it was in the case of IFGN1 the values of f ∗(ri,j) depend on the conditions for the transfer
C1, C2, ..., C7.

C1∗ f ∗(ri,j) = bpr1f(ri,j)c.
where bxc is the floor function which maps a real number x to the largest integer smaller or equal
to x.

C2∗ f ∗(ri,j) =

{
1 , if µ(ri,j) >

1
2

0 , otherwise

C3∗ f ∗(ri,j) =

{
1 , if µ(ri,j) ≥ 1

2

0 , otherwise

C4∗ f ∗(ri,j) =

{
1 , if µ(ri,j) > ν(ri,j)

0 , otherwise

C5∗ f ∗(ri,j) =

{
1 , if µ(ri,j) ≥ ν(ri,j)

0 , otherwise

C6∗ f ∗(ri,j) =

{
1 , if µ(ri,j) > 0

0 , otherwise

C7∗ f ∗(ri,j) =

{
1 , if ν(ri,j) < 1

0 , otherwise

Here, µ(ri,j) and ν(ri,j) are the degrees of validity and non-validity of the predicate ri,j which
are determined by f(ri,j) = 〈µ(ri,j), ν(ri,j)〉. All other components of E are the same as in G
except Y , Φ∗ and Ψ. The tokens in IFGN2 do not receive characteristics and therefore we define
Φ∗(α) = ∅ for all α ∈ pr1pr2E. The places in E does not have initial characteristics: Y (l) = ∅
for all places l. The new characteristic function Ψ in E assigns the same characteristics to the
places in E as the function Φ assigns to the places in G: Ψ(l) = Φ(l) for all places l.

To prove that the so constructed GNCPE represents the functioning and the result of the work
of G we will use the theorem for the completeness of the GN transitions. Let Z ∈ pr1pr1G and
Z∗ ∈ pr1pr1E be two corresponding transitions, i.e. Z∗ is obtained from Z by the procedure
described above.
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We will trace the behavior of two corresponding tokens α ∈ pr1pr2G and α∗ ∈ pr1pr2E

which are in two corresponding input places l′i and l′∗i at the same moment of time. Here we
denote the corresponding to l′i input place l′∗i to avoid any ambiguity. Without loss of generality
we can consider that the two input places have the same characteristics. We can do this because
at least for the transitions which have input places for the two nets it is true – the characteris-
tic functions which assign initial characteristics to the tokens coincide. By induction from the
proof that Z and Z∗ function similarly (which we will prove) it will follow that the corresponding
places have the same characteristics. If the quantity of matter α is distributed to output places
l′′j , l

′′
j+1, · · · , l′′j+k in Z, then the corresponding token α∗ splits into k + 1 tokens which enter the

corresponding places l′′∗j , l
′′∗
j+1, · · · , l′′∗j+k. This is so because f ∗(ri,j) = 1 if the conditions for

transfer in G - C1, C2, · · · , C7 allow the transfer of the token. The characteristic functions for
the positions Φ and Ψ assign equal characteristics to the corresponding places. At the end of the
current time step the two tokens will be transferred to corresponding places and these places will
have the same characteristics. Therefore the two transitions function in the same way. From the
theorem for the completeness of the GN transitions it follows that E represents the functioning
and the results of the work of G. �

Next we will prove that for every GNCP E there exists an IFGN2 which describes the func-
tioning and the result of work of E.

Theorem 5 The functioning and the result of work of every GNCP can be represented by an
IFGN2.

Proof: Let E be a GNCP with components:

E = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K, πK , θK〉, 〈T, t0, t∗〉, 〈X, Y,Φ,Ψ, b〉〉

For every transition Z = 〈L′, L′′, t1, t2, r,M, 〉 of E we construct corresponding transition
Z∗ in the same way as in the proof of Theorem 2. It has one more place lZ which is input and
output for the transition (see Fig. 2). All components are of Z∗ are defined in the same way
as in the proof of Theorem 2. In place lZ a token αZ loops and the place does not obtain new
characteristics. Its initial characteristic is a list with the initial characteristics of all places of the
transition determined by the function Y . Let A∗ be the set of all transitions obtained by the above
procedure. Let G be IFGN2 with components:

G = 〈〈A∗, π∗A, π∗L, c∗, f, θ1, θ2〉, 〈K∗, π∗K , θ∗K〉, 〈T, t0, t∗〉, 〈X,Φ∗〉

The components of the net are defined in the same way as in the proof of Theorem 2. The
function Φ∗ assigns to the places of G both the characteristics of the tokens that are transferred to
the output places in E which are determined by function Φ and the characteristics of the output
places determined by Ψ.

Φ∗(lj) = 〈〈α1,Φlj(α1)〉, 〈α2,Φlj(α2)〉, · · · , 〈αk,Φlj(αk)〉,Ψ(lj)〉
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where α1, ..., αk are the tokens that has entered the output place lj and Ψ(lj) is the characteristic
of the corresponding place of E. Let Zi and Z∗i be two corresponding transitions of E and G. To
compare their work let a token α be in the input place l′i of Zi and a corresponding token α∗ be
in the corresponding to l′i input place l′∗i of G. Apparently neither of them is αZ token. Without
loss of generality we can consider that the characteristics of α and l′i coincide with characteristics
of the place l′∗i . If the splitting of tokens is prohibited, the truth value of the predicate ri,j is
“true” and if the other conditions for the transfer allow it, the token α will be transferred to place
l′′j ∈ pr2Zi. The token α∗ will be transferred to the corresponding output place l′′∗j ∈ pr2Z

∗
i .

The token α and the place l′′j in Zi will receive the characteristics Φlj(α) and Ψ(lj). From the
definition of the characteristic function Φ∗ it is clear that this characteristics will be included in
the characteristics of l′′∗j . The case when splitting of tokens is allowed is analogous. Therefore the
two transitions function similarly and all information relevant to Zi is also present in Z∗i . From
the theorem for completeness of the GN transitions it follows that G represents the functioning
and the results of the work of E. �

From the two theorems above it follows

Theorem 6 ΣIFGN2 ≡ ΣCP .

4 Conclusion

The theorems in this paper state that given a GNCP we can construct IFGN1 and IFGN2(or vice
versa), which preserve the functioning and the results of the work of the given net. Since the
proofs are constructive, they are important for the applications of GNs in the modelling of real
processes. In future, we intend to define intuitionistic fuzzy GNCP and study their relations to
IFGN1 and IFGN2.
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