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Introduction

Out of several higher order fuzzy sets|2, 21, 22, 23, 24, 25|, the notion of intu-
itionistic fuzzy sets (IFS) defined by Atanassov (2| is interesting and useful. Fuzzy sets
are intuitionistic fuzzy sets but the converse is not necessarily true [2]. Besides, it has
been cultured in [15] that vague sets[26] are nothing but intuitionistic fuzzy sets. IFS
theory has been applied in different areas viz., Logic Programming [8], Decision Making
Problems [18, 28], Optimization Problem[1], Medical Diagnosis [19] etc.. In the present
paper, we study intuitionistic fuzzy relations and introduce the concept of intuitionistic

fuzzy database(IFDB).

1 Preliminaries

We present here relevent preliminaries required for the progress of this paper.

Definition 2.1
Let a set E be fixed. An intuitionistic fuzzy set or IFS A in E 1s an object having the
form

A= { <x, pa (x),va (x)>|x€E}
where the function 4 : E — [0, 1] and v4 : E — [0, 1] define the degree of membership
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and degree of non-membership respectively of the element x € E to the set A, which 1s a
subset of E, and for every x € E :

0 < ugy (X)+VA (X)Sl.
The amount 74 (x)=1 — ( pa (x) + v4 (x) ) is called the hesitation part, which may
cater either membership value or non-membership value or to both.

Definition 2.2 -
If A and B are two IFSs of the set E, then
A C Biff Vx€E, [ pa(x) < pup(z) and va(z) > ve(z) ]
ACBiff BDA
A=Biff Vx € E, | pa(z) = pp(x) and va(z) = vp(z) |
A = {<x,va(z), pa(z) > | x€E }
A N B={<x , min(ps(z) , ps(z)) , max(va(z), va(z)) > | x€E }
A U B={<x, max(us(z), us(z)) , min(va(z), vg(z)) > | x€E }
Obviously every fuzzy set has the form
{<x, pa(z) , pac(z) > | x€E }

Definition 2.3
Let X and Y be two sets. An intuitionistic fuzzy relation (IFR) R from X to Y is an
IF5 of X X Y characterized by the membership function ;g and non-membership function

vr. An IFR R from X to Y will be denoted by R (X — Y ) and defined by
R={ <(x,¥), tr (X, ¥), vr (x,y) >|x € X,y €Y }
where ug : X X Y — [0, 1] and vg: X X Y — [0, 1] satisfy the condition
0<upur (xX,y)+vr (x,y) <1forevery (x,y) € X X Y.
The complementary relation of R is

R .= { <(Xa Y)a VR (XaY)a HR (X, Y) >\X€X,yEY}

Definition 2.4
Let Q(X — Y) and R(Y — Z) be two IFRs. The max-min-max composition RoQ is

the intuitionistic fuzzy relation from X to Z, defined by the membership function

UQor (X, 2)=V, [ hq (X, ¥) A pr (¥, 2) ]
and the non-membership function

voor (X, 2)= A\, [vq (%X, ¥) V vr (¥, 2) |
V(x,z) e X xZandVye€eY.

Definition 2.5
An IFR R (X x X) is said to be
(1) reflexive: iff Vx € X, pugr (x,x)=1,
(11) Symmetric : iff V @y, 2 € X, ugr (21, 22)= pgr (x2, 1) and vg (21, T2)=

VR (5’32: xl)a
(iii) transitive : if R®* C R where R*= R o R.

The transitive closure of an IFR R on X x X is R defined by
R=RUR*UR’U.-..

An intuitionistic fuzzy relation R on the cartesian set ( X x X ), is called

1. an intuitionistic tolerance relation on X X X if R 1s reflexive and symmetric.
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2. an 1ntuitionistic similarity (intuitionistic equivalence) relation on X x X if R is
reflexive, symmetric and transitive.

Definition 2.6 [17]
Let A be an IFS of the set E. For a € [0, 1], the a-cut of A is the crisp set A, defined
by
A= {x:x€E,either uy (x) > aorvy (x)<1—a}.
It may be noted that the condition p4(x) > a ensures v4(x) < 1 — a but not conversely.
5o, we can define a-cut of Aas Ay={x: x€E, vy (x) <1 —a }.

2 On Intuitionistic Fuzzy Relations

In this section, we study some properties of IFR. We start with some definitions.

Definition 3.1

If T be an intuitionistic fuzzy tolerance relation on X, then given an o« € [0, 1], two
elements x, y € X are a-similar (denoted by

x Ty y )ifand only if vy (x,y) <1 - «.

Definition 3.2

It T be an intuitionistic fuzzy tolerance relation on X, then given an o € {0, 1], two
elements x, z € X are a-tolerate (denoted by x T'F z ) if and only if either x T, z or there
exists a sequence yy, Yz, - Yr € Xsuch that x T, y1 T yvo T y3 -+ Ty vy, Ty z.

Lemma 3.1
If T be an intuitionistic fuzzy tolerance relation on X, then T is an equivalence re-

lation. For any a € [0, 1], T} partitions X into disjoint equivalence classes. If T is an
intuitionistic fuzzy similarity relation on X then 7, i1s an equivalence relation for any o

€ [0, 1].

Lemma 3.2

Let T 1s an intuitionistic fuzzy similarity relation on X and a € [0, 1| be fixed. Y C
X 1s an equivalence class in the partition determined by T, with respect to T if and only
1f Y 1s a maximal subset obtained by merging elements from X that satisfy

<1-o.
max | vy (x,y)] <1~ a

Lemma 3.3
If T 1s an intuitionistic fuzzy similarity relation on X, then for any o € [0, 1], T, and
T} generate identical equivalence classes.

Lemma 3.4

The transitive closure 7' of an intuitionistic fuzzy tolerance relation 1s the minimal
intuitionistic fuzzy similarity relation containing T.
Proof : T is an proximity relation. Also, 7' is transitive. Minimality 1s obvious. Hence
proved.
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Example 3.1
Consider the intuitionistic fuzzy tolerance relation T on X= { z;, x5, z3, 4 } given

by

z; | (1,0) (.8,.1) (.6,.2) (.3, .4)
T= =z, |(.8,.1) (1,0) (4,.5 (.5,.3)
(.6,.2) (4,.5) (1,0) (.6,.3)

zq | (.3,.4) (.5,.3) (.6,.3) (1,0)

It can be computed that

for a= 1, the partition of X determined by T, given by { { =1 }, { z2 }, { z3 }, { =4
}} '

for a= .9, the partition of X determined by T, given by { { z,, z2 }, { 23 }, { z4 } },

for a= .8, the partition of X determined by 7, given by { { 1, z2, z3 }, { 4 } }, and

for a= .7, the partition of X determined by T, given by { { z,, =4, z3, 4 } }.
Moreover, we see that

when a € (.9, 1], the partition of X determined by T, is { { z1 }, { z2 }, { z3 }, { 24

)

when a € (.8, .9], the partition of X determined by T, is { { 21, 22 }, { z3 }, { 24 } },
when a € (.7, .8|, the partition of X determined by T, is { { z1, 2, z3 }, { z4 } } and
when a € [0, .7], the partition of X determined by T}, is { { z1, 2, T3, T4 } }.

In the next section we introduce the concept of intuitionistic fuzzy database.

3 Intuitionistic Fuzzy Database

A fuzzy relational database introduced by Buckles and Petry [14] is a generalization of
the classical database. A fuzzy relational database is defined as a set of relations where
each relation is a set of tuples. If ¢; represents the i-th tuple, it has the form ( d;;, d;2, - - -,
dim ). In classical relational database, each component d;;, of the tuple is an element of the
corresponding scalar (or discrete finite) domain D; i.e., d;; € D;. But in the case of fuzzy
relational database, the elements of tuples consist of either singleton or crisp subsets of
the scalar domain i.e., d;; C D; (d;; # 0).

The fuzzy relational model of Buckles and Petry [14] is based on similarity relation
30] for each domain of the fuzzy database. Shenoi and Melton [27] generalize the model
by allowing fuzzy proximity relation in each domain in place of fuzzy equivalence relation.
We here generalize fuzzy database by incorporating intuitionistic fuzzy tolarance relation
in place of fuzzy proximity relation. The reason behind such attempt of generalization
lies in the fact that there is always a fair chance of the existence of some indeterministic
part while evaluating the relation between two elements of a domain set in a database.

Definition 4.1 _
An 1ntuitionistic fuzzy database relation R is a subset of the cross product
2D x 2P2 % ... 2Pm  where 2Pi= 201 — ).

Definition 4.2
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Let R C 271 x 2P2 x ... 2Pm he an intuitionistic fuzzy database relation. An intu-
1itionistic fuzzy tuple (with respect to R) is an element of R.

Let t;= ( di1, di2, + -+, dim) be an intuitionistic fuzzy tuple. An interpretation of t, is
a tuple 0= ( a1, az, -+, a, ) where a; € d;; for each domain D;.

For each domain D, if T; be the intuitionistic fuzzy tolerance relation then the mem-
bership function is given by uz; : D; x D; — [0, 1] and the non-membership function is
given by vy, : D; x D; — [0, 1].

Let us make a hypothetical case study below :

We consider a criminal data file. Suppose that one murder has taken place at some
area in a deem light. The police suspects that the murderer 1s also from the same area;
and so police refer to a data file of all the suspected criminals of the that area. Listening
to the eye-witness, the police has discovered that the criminal for that murder case has

more or less full big hair coverage, more or less curly hair texture and he has moderately
large build. From the criminal data file, the information table with attributes ‘HAIR

COVERAGE’, ‘HAIR TEXTURE’ and ‘BUILD’ 1s given by

NAME HAIR COVERAGE HAIR TEXTURE BUILD
Arup Full Small(FS) Stc. | Large
Boby Rec. Wavy Very Small(VS)

Chandra Full Small(FS) Straight(Str.) Small(S)
Dutta. Bald Curly Average(A)
Esita, Bald Wavy Average(A)

Falguni Full Big(FB) Stc. Very Large(VL)

Gautom Full Small Straight Small(S)

Halder Rec. Curly Average(A)

Now, consider the intuitionistic fuzzy tolerance relation Tp, where Dy = ‘HAIR COV-
ERAGE’, which is given by

FB FS Rec.  Bald
FB (1,0) (8,.1) (4,.4) (0,1)
FS (.8,.1) (1,0) (.5,.4) (0,.9)
Rec. (.4,.4) (.5,.4) (1,0) (4, .4)
Bald (0,1) (0,.9) (.4,.4) (1,0)

where, HAIR COVERAGE= { FB, FS, Rec., Bald }.

Intuitionistic fuzzy tolerance relation Tp, where Dy= ‘HAIR TEXTURE’, is given by

Str. Stc.  Wavy Curly

St (1,0) (.7,.3) (2,1 (.1,.7)
Stc. (.7,.3) (1,0) (.3,.4) (.5,.2)
Wavy (.2,.7) (.3,.4) (1,0) (4, .4)
Bald (.1,.7) (.5,.2) (.4, .4) (1,0)
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where, HAIR TEXTURE= { Str., Stc., Wavy, Curly }.

Also, 1ntuitionistic fuzzy Tolerance relation T, where Dz= ‘BUILD’, is given by

VL L A S VS
VL (1,00 (.8,.2) (.5, .4) (.3,.6) (0,1)
L (8.2) (1,00 (6,.4) (4,.5) (0,.9)
A (5,.4) (6,.4) (1,0) (.6,.3) (.3,.6)
S (.3,.6) (4,.5 (.6,.3) (1,00 (.8,.2)

VS (0,1) (0,.9) (3,.6) (8.2 (1,0)

where, BUILD= { VL, L, A, S, VS }.

Now, the job is to find out a list of those criminals who resemble with more or less
big hair coverage with more or less curly hair texture and moderately large build. This
list will be useful to the police for further investigation. It can be translated into relational
algebra in the following form :

(Project (Select (CRIMINALS DATA FILE)
where HAIR COVERAGE= “FULL BIG”,
HAIR TEXTURE= “CURLY”
BUILD= "LARGE”
with LEVEL(HAIR COVERAGE)= 0.8
LEVEL(HAIR TEXTURE)= 0.8
LEVEL(BUILD)= 0.7)
with LEVEL(NAME)=0.0,
LEVEL(HAIR COVERAGE)= 0.8,
LEVEL(HAIR TEXTURE)= 0.8,
LEVEL(BUILD)= 0.7
giving LIKELY MURDERER).

Result : It can be computed that the above intuitionistic fuzzy query gives rise to
the following relation :

LIKELY MURDERER

NAME HAIR COVERAGE ~ HAIR TEXTURE BUILD
{ Arup, Falguni } { Full Big, Full Small }  { Curly, Stc. }  {Large, Very Large }

Therefore, according to the information obtained from the eye-witness, police con-
cludes that Arup or Falguni are the likely murderers. And, further investigation now is
to be done on them only, instead of dealing with a huge list of criminals.

4 CONCLUSION

There 1s always a fair chance of the existence of some indeterministic part while evaluating
the relation between two elements of a domain value set in a database. As a consequence,
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the non-membership {functions have signifacant importance compared to the complement
of fuzzy sets in finding out the partitions of a domain value set. Intuitionistic fuzzy set
theory takes care of such indeterministic part in connection with each references point of
1ts universe. In the present paper we have introduced a concept of intuitionistic fuzzy data
base (IFDB) and have shown by an exmple the usefulness of intuitionistic fuzzy queries
on a intuitionistic fuzzy database.
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