Eighth Int. Conf. on IFSs, Varna, 20-21 June 2004 NIFS Vol. 10 (2004), 3, 1-7

Intuitionistic fuzzy-valued possibility and necessity measures

Adrian I. Ban

Department of Matematics, University of Oradea, str. Armatei Romane 5, 3700 Oradea, Romania e-mail: aiban@uoradea.ro

Abstract We introduce intuitionistic fuzzy-valued possibility and necessity measures and we study their relations with the intuitionistic fuzzy-valued fuzzy measures proposed in a recent paper. Properties with respect to continuity and some examples are also given.

1 Preliminaries

A fuzzy measure (see e. g. [5]) is a set function $\mu : \mathcal{A} \to [0, 1]$ which satisfies $\mu(\emptyset) = 0, \mu(X) = 1$ and $A \subseteq B$ implies $\mu(A) \leq \mu(B)$. A fuzzy measure (or generally a set function) μ defined on a σ -algebra \mathcal{A} is called continuous from below if for every sequence $(A_n)_{n \in \mathbb{Q}} \subset \mathcal{A}$ such that $A_n \subseteq A_{n+1}, \forall n \in \mathbb{Q}$ we have

$$\mu\left(\bigcup_{n\in\mathbf{Q}}A_n\right) = \lim_{n\to\infty}\mu\left(A_n\right)$$

and continuous from above if for every sequence $(A_n)_{n \in Q} \subset \mathcal{A}$ such that $A_n \supseteq A_{n+1}, \forall n \in Q$ we have

$$\mu\left(\bigcap_{n\in\mathbf{Q}}A_{n}\right)=\lim_{n\to\infty}\mu\left(A_{n}\right).$$

The important set in intuitionistic fuzzy set theory (see [1], [2])

$$\mathcal{L} = \{ (x_1, x_2) \in [0, 1] \times [0, 1]; x_1 + x_2 \le 1 \}$$

is a complete lattice (see [4]) if we consider

$$(x_1, x_2) \leq_{\mathcal{L}} (y_1, y_2)$$
 iff $x_1 \leq y_1$ and $x_2 \geq y_2$,

$$\begin{split} \lor_{\mathcal{L}} A &= (\lor \left\{ x \in [0,1] \, | \exists y \in [0,1] : (x,y) \in A \right\}, \\ & \land \left\{ y \in [0,1] \, | \exists x \in [0,1] : (x,y) \in A \right\}) \\ \land_{\mathcal{L}} A &= (\land \left\{ x \in [0,1] \, | \exists y \in [0,1] : (x,y) \in A \right\}, \\ & \lor \left\{ y \in [0,1] \, | \exists x \in [0,1] : (x,y) \in A \right\}, \end{split}$$

for each $A \subseteq \mathcal{L}$.

The following concepts are introduced in the paper [3].

Definition 1.1 An intuitionistic fuzzy-valued fuzzy measure over a measurable space (X, \mathcal{A}) is a map $v : \mathcal{A} \to \mathcal{L}$ with the following properties:

(i)
$$v(\emptyset) = (0,1);$$

(ii) $v(X) = (1,0);$
(iii) $A \subseteq B$ implies $v(A) \leq_{\mathcal{L}} v(B).$

Definition 1.2 The intuitionistic fuzzy-valued fuzzy measure $v : \mathcal{A} \to \mathcal{L}, v(A) = (v_1(A), v_2(A) \text{ is called:}$

- (i) continuous from below if v_1 and v_2 are continuous from below;
- (ii) continuous from above if v_1 and v_2 are continuous from above;

(iii) *-decomposable if there exists the composition law *: $\mathcal{L} \to \mathcal{L}$ such that $v(A \cup B) = v(A) * v(B)$, for every $A, B \in \mathcal{A}, A \cap B = \emptyset$.

Let us point out that the above definition can be given even if v is any intuitionistic fuzzy-valued set function on a σ -algebra.

The dual \overline{v} of an intuitionistic fuzzy-valued fuzzy measure $v = (v_1, v_2)$, that is $\overline{v}(A) = (v_2(A^c), v_1(A^c))$, where A^c denotes the complement set of A, is also an intuitionistic fuzzy-valued fuzzy measure and the following property is proved in [3].

Theorem 1.3 If v is continuous from below (continuous from above) then \overline{v} is continuous from above (continuous from below).

In this paper, by convention $\bigvee_{\substack{\mathcal{L} \\ t \in \emptyset}} A_t = (0, 1)$ and, only for simplicity, we consider $\mathcal{A} = \mathcal{P}(X)$.

In the book [6], pp. 63-66 the following definitions are given and the below results are proved.

Definition 1.4 The set function $\pi : \mathcal{P}(X) \to [0,1]$ is called a possibility measure if $\pi(X) = 1$ and

$$\pi\left(\bigcup_{t\in T}A_t\right) = \bigvee_{t\in T}\pi\left(A_t\right).$$

for any subclass $(A_t)_{t\in T} \subset \mathcal{P}(X)$, where T is an arbitrary index set.

Definition 1.5 The dual set function ω of a possibility measure π , that is

$$\omega\left(A\right) = 1 - \pi\left(A^c\right),$$

for any $A \in \mathcal{P}(X)$, is called a necessity measure (or consonant belief function) on $\mathcal{P}(X)$.

Theorem 1.6 Any possibility measure is a continuous from below fuzzy measure. Any necessity measure is a continuous from above fuzzy measure.

Theorem 1.7 A set function $\omega : \mathcal{P}(X) \to [0,1]$ is a necessity measure if and only if it satisfies

$$\omega\left(\bigcap_{t\in T}A_{t}\right)=\underset{t\in T}{\wedge}\omega\left(A_{t}\right),$$

for any subclass $(A_t)_{t\in T} \subset \mathcal{P}(X)$, where T is an arbitrary index set.

2 Intuitionistic fuzzy-valued possibility measures

The concept of possibility measure on classical sets with intuitionistic fuzzy values is introduced and studied in this section.

Definition 2.1 The set function $\widetilde{\pi} : \mathcal{P}(X) \to \mathcal{L}$ is called an intuitionistic fuzzy-valued possibility measure if $\widetilde{\pi}(X) = (1,0)$ and

$$\widetilde{\pi}\left(\bigcup_{t\in T}A_{t}\right)=\bigvee_{\substack{t\in T}}\widetilde{\pi}\left(A_{t}\right),$$

for any subfamily $(A_t)_{t\in T} \subset \mathcal{P}(X)$, where T is an arbitrary index set.

Theorem 2.2 Any intuitionistic fuzzy-valued possibility measure is a $\vee_{\mathcal{L}}$ -decomposable intuitionistic fuzzy-valued fuzzy measure.

Proof. According to the convention, when $T = \emptyset$, we have $\bigcup_{t \in T} A_t = \emptyset$ and $\bigvee_{t \in T} \widetilde{\pi}(A_t) = (0, 1)$. So $\widetilde{\pi}(\emptyset) = (0, 1)$. Furthermore, if $A_1, A_2 \subseteq X$ and $T = \{1, 2\}$ then we have

$$\widetilde{\pi}\left(A_{1}\cup A_{2}\right)=\widetilde{\pi}\left(A_{1}\right)\vee_{\mathcal{L}}\widetilde{\pi}\left(A_{2}\right)$$

even if $A_1 \cap A_2 \neq \emptyset$. If $A_1 \subseteq A_2$ then $A_1 \cup A_2 = A_2$, therefore

$$\widetilde{\pi}(A_1) \leq_{\mathcal{L}} \widetilde{\pi}(A_1) \vee_{\mathcal{L}} \widetilde{\pi}(A_2) = \widetilde{\pi}(A_2).$$

Theorem 2.3 If $\widetilde{\pi} : \mathcal{P}(X) \to \mathcal{L}, \widetilde{\pi} = (\pi_1, \pi_2)$ is an intuitionistic fuzzy-valued possibility measure then $\pi_1, \pi_2^{\sim} : \mathcal{P}(X) \to [0, 1]$, where $\pi_2^{\sim}(A) = 1 - \pi_2(A)$, are possibility measures.

Proof. Because $\tilde{\pi}(X) = (1,0)$ the equalities $\pi_1(X) = 1$ and $\pi_2^{\sim}(X) = 1$ are immediate.

Let T be an arbitrary index set and $(A_t)_{t\in T} \subseteq \mathcal{P}(X)$. Because

$$\begin{pmatrix} \pi_1 \begin{pmatrix} \bigcup A_t \\ t \in T \end{pmatrix}, \pi_2 \begin{pmatrix} \bigcup A_t \\ t \in T \end{pmatrix} \end{pmatrix} = \widetilde{\pi} \begin{pmatrix} \bigcup A_t \\ t \in T \end{pmatrix} = \bigvee_{\substack{\ell \in T \\ t \in T}} \widetilde{\pi} (A_t) = \begin{pmatrix} \bigvee \pi_1 (A_t), \bigwedge_{t \in T} \pi_2 (A_t) \end{pmatrix},$$

we have

$$\pi_1\left(\bigcup_{t\in T} A_t\right) = \bigvee_{t\in T} \pi_1\left(A_t\right)$$

and

$$\pi_{2}^{\sim} \left(\bigcup_{t \in T} A_{t} \right) = 1 - \pi_{2} \left(\bigcup_{t \in T} A_{t} \right) = 1 - \bigwedge_{t \in T} \pi_{2} \left(A_{t} \right)$$
$$= \bigvee_{t \in T} \left(1 - \pi_{2} \left(A_{t} \right) \right) = \bigvee_{t \in T} \pi_{2}^{\sim} \left(A_{t} \right).$$

Theorem 2.4 Any intuitionistic fuzzy-valued possibility measure is continuous from below.

Proof. If $\tilde{\pi} = (\pi_1, \pi_2)$ is an intuitionistic fuzzy-valued possibility measure then π_1 and π_2^{\sim} in Theorem 2.3 are continuous from below according to Theorem 1.6. We obtain π_1 and π_2 continuous from below, that is $\tilde{\pi}$ continuous from below (see Definition 1.2).

Example 2.5 Let X = U and $\tilde{\pi} : \mathcal{P}(X) \to \mathcal{L}, \tilde{\pi} = (\pi_1, \pi_2)$ defined by

$$\widetilde{\pi} (A) = \begin{cases} (1,0), & \text{if } A \neq \emptyset \\ (0,1), & \text{if } A = \emptyset. \end{cases}$$

It is obvious that $\widetilde{\pi}(X) = (1,0), \widetilde{\pi}\left(\bigcup_{t\in T} A_t\right) = \bigvee_{t\in T} \widetilde{\pi}(A_t) = (1,0)$ if there exists $t_0 \in T$ such that $A_{t_0} \neq \emptyset$ and $\widetilde{\pi}\left(\bigcup_{t\in T} A_t\right) = \bigvee_{t\in T} \widetilde{\pi}(A_t) = (0,1)$ contrariwise, therefore $\widetilde{\pi}$ is an intuitionistic fuzzy-valued possibility measure. If we take $A_n = (0, \frac{1}{n}), n \geq 2$ then $(A_n)_{n\in Q}$ is decreasing, $\bigcap_{n\geq 2} A_n = \emptyset, \widetilde{\pi}(A_n) = (1,0), \forall n \in Q, n \geq 2$, we obtain

$$\pi_1\left(\bigcap_{n\geq 2}A_n\right) = \pi_1\left(\emptyset\right) = 0 \neq 1 = \lim_{n\to\infty}\pi_1\left(A_n\right),$$

therefore $\tilde{\pi}$ is not continuous from above.

The density functions help us to construct intuitionistic fuzzy-valued possibility measures.

Definition 2.6 If $\widetilde{\pi} : \mathcal{P}(X) \to \mathcal{L}$ is an intuitionistic fuzzy-valued possibility measure then the function $\widetilde{f} : X \to \mathcal{L}$ defined by

$$\widetilde{f}\left(x\right) = \widetilde{\pi}\left(\left\{x\right\}\right)$$

is called its density function.

Theorem 2.7 If \tilde{f} is the density function of an intuitionistic fuzzy-valued possibility measure $\tilde{\pi} : \mathcal{P}(X) \to \mathcal{L}$ then

$$\bigvee_{x \in X} \widetilde{f}(x) = (1,0)$$

Conversely, if $\widetilde{f}: X \to \mathcal{L}$ satisfies $\bigvee_{\substack{\mathcal{L} \\ x \in X}} \widetilde{f}(x) = (1,0)$ then there exists an intuitionistic fuzzy-valued possibility measure $\widetilde{\pi}$ such that \widetilde{f} is the density function of $\widetilde{\pi}$.

Proof. If \tilde{f} is the density function of $\tilde{\pi}$ then we get

$$\bigvee_{\substack{x \in X}} \widetilde{f}(x) = \bigvee_{\substack{x \in X}} \widetilde{\pi}(\{x\}) = \widetilde{\pi}\left(\bigcup_{x \in X} \{x\}\right)$$
$$= \widetilde{\pi}(X) = (1,0).$$

Conversely, taking

$$\widetilde{\pi}\left(A\right) = \bigvee_{x \in A} \widetilde{f}\left(x\right),$$

for any $A \in \mathcal{P}(X)$, then

$$\widetilde{\pi}\left(X\right) = \bigvee_{\substack{\mathcal{L} \\ x \in X}} \widetilde{f}\left(x\right) = (1,0)$$

and

$$\widetilde{\pi}\left(\bigcup_{t\in T}A_{t}\right) = \bigvee_{\substack{x\in\bigcup_{t\in T}A_{t}}}\widetilde{f}\left(x\right) = \bigvee_{\substack{t\in T\\x\in A_{t}}}\bigvee_{x\in A_{t}}\widetilde{f}\left(x\right) = \bigvee_{\substack{t\in T\\t\in T}}\widetilde{\pi}\left(A_{t}\right),$$

for any subfamily $(A_t)_{t\in T} \subset \mathcal{P}(X)$, where T is an arbitrary index set. If $A = \{x\}$ then we obtain $\tilde{f}(x) = \tilde{\pi}(\{x\})$, therefore \tilde{f} is the density function of $\tilde{\pi}$.

Example 2.8 Let $X = \{x_1, x_2, x_3, x_4\}$ and $\tilde{f} : X \to \mathcal{L}$ a function given by $\tilde{f}(x_1) = (1,0), \tilde{f}(x_2) = (0.3, 0.4), \tilde{f}(x_3) = (0.4, 0.6), \tilde{f}(x_4) = (0.2, 0.1).$ The intuitionistic fuzzy-valued possibility measure $\tilde{\pi}$ induced by \tilde{f} is given by

$$\begin{split} \widetilde{\pi} \left(\emptyset \right) &= \ \bigvee_{\mathcal{L}} \widetilde{f} \left(x \right) = \left(0, 1 \right), \\ \widetilde{\pi} \left(\{ x_1 \} \right) &= \ \widetilde{\pi} \left(\{ x_1, x_2 \} \right) = \widetilde{\pi} \left(\{ x_1, x_3 \} \right) = \widetilde{\pi} \left(\{ x_1, x_4 \} \right) = \left(1, 0 \right) \\ \widetilde{\pi} \left(\{ x_2, x_3 \} \right) &= \ \left(0.3, 0.4 \right) \lor_{\mathcal{L}} \left(0.4, 0.6 \right) = \left(0.4, 0.4 \right) \\ \widetilde{\pi} \left(\{ x_2, x_4 \} \right) &= \ \left(0.3, 0.4 \right) \lor_{\mathcal{L}} \left(0.2, 0.1 \right) = \left(0.3, 0.1 \right) \\ \widetilde{\pi} \left(\{ x_3, x_4 \} \right) &= \ \left(0.4, 0.6 \right) \lor_{\mathcal{L}} \left(0.2, 0.1 \right) = \left(0.4, 0.1 \right) \\ \widetilde{\pi} \left(\{ x_1, x_2, x_3 \} \right) &= \ \widetilde{\pi} \left(\{ x_1, x_2, x_4 \} \right) = \widetilde{\pi} \left(\{ x_1, x_3, x_4 \} \right) = \left(1, 0 \right) \\ \widetilde{\pi} \left(\{ x_1, x_2, x_3, x_4 \} \right) &= \ \left(1, 0 \right). \end{split}$$

3 Intuitionistic fuzzy-valued necessity measures

The concept of necessity measure on classical sets with intuitionistic fuzzy values is introduced in the following definition.

Definition 3.1 The dual $\widetilde{\omega} : \mathcal{P}(X) \to \mathcal{L}$ of an intuitionistic fuzzy-valued possibility measure $\widetilde{\pi} : \mathcal{P}(X) \to \mathcal{L}, \widetilde{\pi}(A) = (\pi_1(A), \pi_2(A))$, that is $\widetilde{\omega}(A) = (\pi_2(A^c), \pi_1(A^c))$ for any $A \in \mathcal{P}(X)$, is called an intuitionistic fuzzy-valued necessity measure on $\mathcal{P}(X)$.

Theorem 3.2 Any intuitionistic fuzzy-valued necessity measure is continuous from above.

Proof. Theorem 1.3 and Theorem 2.4 imply the dual of any intuitionistic fuzzy-valued possibility measure is continuous from above. ■

The following theorem characterizes the intuitionistic fuzzy-valued necessity measures.

Theorem 3.3 An intuitionistic fuzzy-valued set function $\widetilde{\omega} : \mathcal{P}(X) \to \mathcal{L}$ is an intuitionistic fuzzy-valued necessity measure if and only if it satisfies

$$\widetilde{\omega}\left(\bigcap_{t\in T}A_{t}\right)=\bigwedge_{t\in T}\widetilde{\omega}\left(A_{t}\right),$$

for any subfamily $(A_t)_{t\in T} \subset \mathcal{P}(X)$, where T is an arbitrary index set.

Proof. If $\tilde{\omega}$ is an intuitionistic fuzzy-valued necessity measure then it is the dual of an intuitionistic fuzzy-valued possibility measure $\tilde{\pi} = (\pi_1, \pi_2)$. Taking into account Theorem 2.3 we obtain

$$\begin{split} \widetilde{\omega} \left(\bigcap_{t \in T} A_t \right) &= \left(\pi_2 \left(\left(\bigcap_{t \in T} A_t \right)^c \right), \pi_1 \left(\left(\bigcap_{t \in T} A_t \right)^c \right) \right) \right) \\ &= \left(\pi_2 \left(\bigcup_{t \in T} A_t^c \right), \pi_1 \left(\bigcup_{t \in T} A_t^c \right) \right) \\ &= \left(1 - \pi_2^\sim \left(\bigcup_{t \in T} A_t^c \right), \pi_1 \left(\bigcup_{t \in T} A_t^c \right) \right) \\ &= \left(1 - \bigvee_{t \in T} \pi_2^\sim \left(A_t^c \right), \bigvee_{t \in T} \pi_1 \left(A_t^c \right) \right) \\ &= \left(\bigwedge_{t \in T} \left(1 - \pi_2^\sim \left(A_t^c \right) \right), \bigvee_{t \in T} \pi_1 \left(A_t^c \right) \right) \\ &= \left(\bigwedge_{t \in T} \pi_2 \left(A_t^c \right), \bigvee_{t \in T} \pi_1 \left(A_t^c \right) \right) \\ &= \bigwedge_{t \in T} \left(\pi_2 \left(A_t^c \right), \pi_1 \left(A_t^c \right) \right) \\ &= \bigwedge_{t \in T} \left(A_t \right), \end{split}$$

for any subfamily $(A_t)_{t\in T} \subset \mathcal{P}(X)$, where T is an arbitrary index set and $\pi_2^{\sim}(A) = 1 - \pi_2(A)$, for every $A \in \mathcal{P}(X)$.

Conversely, let $\widetilde{\omega} = (\omega_1, \omega_2)$ an intuitionistic fuzzy-valued set function which satisfies $\widetilde{\omega}\left(\bigcap_{t\in T} A_t\right) = \bigwedge_{t\in T} \widetilde{\omega}(A_t)$, that is $\omega_1\left(\bigcap_{t\in T} A_t\right) = \bigwedge_{t\in T} \omega_1(A_t)$ and $\omega_2\left(\bigcap_{t\in T} A_t\right) = \bigvee_{t\in T} \omega_2(A_t)$, for any subfamily $(A_t)_{t\in T} \subset \mathcal{P}(X)$, where T is an arbitrary index set. We must prove only that $\widetilde{\pi} = (\pi_1, \pi_2)$ defined by

$$\pi_1\left(A\right) = \omega_2\left(A^c\right)$$

and

$$\pi_2(A) = \omega_1(A^c)$$

is an intuitionistic fuzzy-valued possibility measure because it is obvious that $\tilde{\omega}$ is the dual of $\tilde{\pi}$. We have

$$\widetilde{\pi}(X) = (\pi_1(X), \pi_2(X)) = (\omega_2(\emptyset), \omega_1(\emptyset)) = (1, 0)$$

and

$$\begin{aligned} \widetilde{\pi} \begin{pmatrix} \bigcup A_t \\ t \in T \end{pmatrix} &= \left(\omega_2 \left(\left(\bigcup_{t \in T} A_t \right)^c \right), \omega_1 \left(\left(\bigcup_{t \in T} A_t \right)^c \right) \right) \\ &= \left(\omega_2 \left(\bigcap_{t \in T} A_t^c \right), \omega_1 \left(\bigcap_{t \in T} A_t^c \right) \right) \\ &= \left(\bigvee_{t \in T} \omega_2 \left(A_t^c \right), \bigwedge_{t \in T} \omega_1 \left(A_t^c \right) \right) \\ &= \bigvee_{\mathcal{L}} \left(\omega_2 \left(A_t^c \right), \omega_1 \left(A_t^c \right) \right) \\ &= \bigvee_{\mathcal{L}} \left(\pi_1 \left(A_t \right), \pi_2 \left(A_t \right) \right) \\ &= \bigvee_{t \in T} \left(A_t \right). \end{aligned}$$

References

- [1] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] Atanassov, K. T., Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Physica Verlag, Heidelberg, 1999.
- [3] Ban, A. I., Intuitionistic fuzzy-valued fuzzy measures, submitted.
- [4] Cornelis, C., Deschrijver, G., Kerre, E. E., Implication in intuitionistic and intervalvalued fuzzy set theory: construction, classification, application, submitted.
- [5] Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980.
- [6] Wang, Z., Klir, G., Fuzzy Measure Theory, Plenum Press, New York, 1992.