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Let m be a positive monotone set function defined on D ,i.e,(X,D,m) is a mono-
tone measure space, and f non-negative function on X.By Proposition 15 we can define
Choque’s integral as follows:

DEFINITION 1 Let (X,D,m) be a monotone measure space and g : [A,B] −→
[0,∞]. Extended Choque’s integral of measurable function f with respect to m, denoted
by (Cg)

∫ B
A f dm ,is defined by

(Cg)
∫ B

A
f dm =

{ ∫ B
A m({x|f(x) > g(r)}) drif f is o-measurable∫ B
A m({x|f(x) ≥ g(r)}) drif f is c-measurable

Proposition 1 Let (X,D,m) be a monotone measure space and f a measurable
function. If, for every r ∈ [A,B]

G(g(r)) =

{
−m({x|f(x) > g(r)}) if f is o-measurable
−m({x|f(x) ≥ g(r)}) if f is c-measurable

and
lim
r→B

g(r) =∞

then

(Cg)
∫ B

A
f dm =

∫ B

A
(r − A) dG(g(r))

The integral on the right side is Stieltjes integral.
Proof. By property Stieltjes integral we have∫ B

A
(r − A) dG(g(r)) = (r − A) ·G(g(r))|BA −

∫ B

A
G(g(r)) dr = (Cg)

∫ B

A
f dm

Proposition 2 Let (X,D,m) be a monotone measure space. Let f and p measurable
functions and {fn} a sequence of measurable functions.
(1)f ≤ p implies (Cg)

∫ B
A f dm ≤ (Cg)

∫ B
A p dm

(1′)g1 ≤ g2 implies (Cg2)
∫ B
A f dm ≤ (Cg1)

∫ B
A f dm

(2) If g(a · t) = a ·g(t) for every a > 0 (when t > 0 and g is continuous then g(t) = t ·g(1))
then
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(Cg)
∫ B
A a · f dm = a · (Cg)

∫ B/a
A/a f dm for every a > 0

(2′) Let Z = {r|g(r) = 0} and Z is measurable then

(Cg)
∫ B

A
0 · f dm =

{ ∫ B
A m({x|0 > g(r)}) drif f is o-measurable∫ B
A m({x|0 ≥ g(r)}) drif f is c-measurable

=

{
0if f is o-measurable
m(X) ·m1(Z)if f is c-measurable

Where m1 is ordinary measure.
(2”)(Cg)

∫ B
A a · f dm = a · (Cg)

∫ B
A f dm for every a = 0 and m1(Z) = 0

(3)If m is an ordinary measure, then Choquet’s integral coincider with Lebesgue integral.
(4)Let F = {r|g(r) ≤ 1} and F is measurable then

(Cg)
∫ B

A
χA dm = m(A) ·m1(F ) (A ∈ D)

(5) If m is continuous from below, then fn ↑ f implies that

(Cg)
∫ B

A
fn dm ↑ (Cg)

∫ B

A
f dm

(5’) If m is continuous from below, then gn ↑ g implies that

(Cgn)
∫ B

A
f dm ↑ (Cg)

∫ B

A
f dm

(6) Let m be continuous from above. If fn ↑ f and if for at least one value of n the
function fn is bounded and m({fn > infr∈[A,B]g(r)}), then

(Cg)
∫ B

A
fn dm ↑ (Cg)

∫ B

A
f dm

(6’) Let m be continuous from above. If gn ↑ g and if for at least one value of n the
function gn is bounded and m({f > infr∈[A,B]gn(r)}), then

(Cgn)
∫ B

A
f dm ↑ (Cg)

∫ B

A
f dm

Proof. (1) When f ≤ p we have m({x|f(x) > g(r)}) ≤ m({x|p(x) > g(r)}) if f and p is
o-measurable. When f and p is c-measurable we have m({x|f(x) ≥ g(r)}) ≤ m({x|p(x) ≥
g(r)})

(Cg)
∫ B

A
f dm =

{ ∫ B
A m({x|f(x) > g(r)}) drif f is o-measurable∫ B
A m({x|f(x) ≥ g(r)}) drif f is c-measurable

≤
{ ∫ B

A m({x|p(x) > g(r)}) drif p is o-measurable∫ B
A m({x|p(x) ≥ g(r)}) drif p is c-measurable

= (Cg)
∫ B

A
p dm

When f and p aren’t simultaneously o-measurable or c-measurable we use Proposition
7.1 from [2] and the reasoning above.
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(1’)When g1 ≤ g2 and f is o-measurable we have m({x|f(x) > g2(r)}) ≤ m({x|p(x) >
g1(r)}) . When f is c-measurable we have m({x|f(x) ≥ g2(r)}) ≤ m({x|p(x) ≥ g1(r)})

(Cg2)
∫ B

A
f dm =

{ ∫ B
A m({x|f(x) > g2(r)}) drif f is o-measurable∫ B
A m({x|f(x) ≥ g2(r)}) drif f is c-measurable

≤
{ ∫ B

A m({x|f(x) > g1(r)}) drif f is o-measurable∫ B
A m({x|f(x) ≥ g1(r)}) drif f is c-measurable

= (Cg1)
∫ B
A f dm

For (2) we obtain

(Cg)
∫ B

A
a · f dm =

{ ∫ B
A m({x|a · f(x) > g(r)}) drif f is o-measurable∫ B
A m({x|a · f(x) ≥ g(r)}) drif f is c-measurable

=

{ ∫ B
A m({x|f(x) > 1/a · g(r)}) drif f is o-measurable∫ B
A m({x|f(x) ≥ 1/a · g(r)}) drif f is c-measurable

=

{ ∫ B
A m({x|f(x) > g(1/a · r)}) drif f is o-measurable∫ B
A m({x|f(x) ≥ g(1/a · r)}) drif f is c-measurable

=

{
a ·

∫ B
A 1/a ·m({x|f(x) > g(1/a · r)}) drif f is o-measurable

a ·
∫ B
A 1/a ·m({x|f(x) ≥ g(1/a · r)}) drif f is c-measurable

= a ·


∫ B/a
A/a m({x|f(x) > g(r)}) drif f is o-measurable∫ B/a
A/a m({x|f(x) ≥ g(r)}) drif f is c-measurable

a · (Cg)
∫ B/a
A/a f dm

(2’) and (2”),(3) are obviously.
(4)(Cg)

∫ B
A χA dm = (Cg)

∫
[A,B]−F χA dm+ (Cg)

∫
F χA dm = (Cg)

∫
F χA dm = m(A) ·m1(F )

(5)Let fn andf are c and o -measurable .From fn ↗ f we have {x|fi > g(r)} ⊂ {x|fi+1 >
g(r)} for every i and r. m is continuous from below consequently m({x|f > g(r)}) =
m(

⋃{x|fi > g(r)}) = limn→∞m({x|fi > g(r)}). We use that {x|f > g(r)} =
⋃{x|fi >

g(r)}. Let qi(r) = m({x|fi > g(r)}) = m({x|fi ≥ g(r)}) and q(r) = m({x|f > g(r)}) =
m({x|f ≥ g(r)}).

Let fn ↗ f ,fn andf are c and o -measurable .If m and g are continuous function
obviously that qi(r)and q(r) are continuous functions.From Dynni’s criterion of uniformly
converges we have qi(r) uniformly converges on q(r) in [A,B].Therefore

(Cg)
∫ B

A
fn dm ↑ (Cg)

∫ B

A
f dm

because [A,B] is compact set.
Proposition 3 Let (X,D,m) be a monotone measure space.Every simple function f on
X can be represented as

f =
n∑
i=1

(ai − ai−1) · χAi
, (12)
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where 0 = a0 ≤ a1 ≤ · · · ≤ an and A1 ⊃ A2 ⊃ · · · ⊃ An. Extended Choquet’s integral of
a simple function f writen as (12) with respect to m can be represented as

(Cg)
∫ B

A
f dm =

n∑
i=1

(ai − ai−1) ·m(Ai) ·m1(Fi) (13)

where g(a · t) = a · g(t), F = {r|g(r) ≤ 1} and Fi = F
⋂

[A/(ai − ai−1), B/(ai − ai−1)]If a
monotone set function m is continuous from below, then we can define the integral like
Lebesgue integral: for a simple function f defined as (12), we define the integral of f as
(13), and for a measurable function f , we define the integral of f as

(Cg)
∫ B

A
f dm = lim

n→∞
(Cg)

∫ B

A
fn dm

where {fn} is a sequence of simple functions such that for every x ∈ X, fn ↑ f.
Since monotone set function generally is non-additive, also Extended Choquet’s inte-

gral is generally non-additive. Concerning the additivity of Extended Choquet’s integral,
the next theorem holds.

DEFINITION 2 Let (X,D,m) be a monotone measure space,X = [0,∞] L = {g :
[0,∞] −→ [0,∞]|g(t · r) = t · g(r), t ∈ R+} and g ∈ L

< f, g >= (Cg)
∫ ∞
0

f dm

Lemma 1 Let α ∈ R+ then

< α · f, g >= α· < f, g >

Proof. It is obviously from (2 )Proposition 2.
Lemma 2 Let α ∈ R+ then

< f, α · g >= 1/α· < f, g >

Proof. < f, α · g >= (Cα·g)
∫∞
0 f dm =

(Cα·g)
∫ ∞
0

f dm =

{ ∫∞
0 m({x|f(x) > α · g(r)}) drif f is o-measurable∫∞
0 m({x|f(x) ≥ α · g(r)}) drif f is c-measurable

=

{
1/α ·

∫∞
0 m({x|f(x) > g(α · r)}) d(α · r)if f is o-measurable

1/α ·
∫∞
0 m({x|f(x) ≥ g(α · r)}) d(α · r)if f is c-measurable

= 1/α ·
{ ∫∞

0 m({x|f(x) > g(z)}) dzif f is o-measurable∫∞
0 m({x|f(x) ≥ g(z)}) dzif f is c-measurable

= 1/α ·
{ ∫∞

0 m({x|f(x) > g(r)}) drif f is o-measurable∫∞
0 m({x|f(x) ≥ g(r)}) drif f is c-measurable

= 1/α · (Cg)
∫∞
0 f dm = 1/α· < f, g >.

Lemma 3 Let m(A
⋃
B) + m(A

⋂
B) ≤ m(A) + m(B) (A ∈ D,B ∈ D) then < f, g1 +

g2 >≤< f, g1 > + < f, g2 >
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Proof. We have m({x|f(x) ≥ (g1 +g2)(r)}) = m({x|f(x) ≥ g1(r)}
⋂{x|f(x) ≥ g2(r)}) ≤

m({x|f(x) ≥ g1(r)})+m({x|f(x) ≥ g2(r)}) andm({x|f(x) > (g1+g2)(r)}) = m({x|f(x) >
g1(r)}

⋂{x|f(x) > g2(r)}) ≤ m({x|f(x) > g1(r)}) + m({x|f(x) > g2(r)}) By property
ordinary integrals we conclude < f, g1 + g2 >≤< f, g1 > + < f, g2 >
Theorem 1 Let (X,D,m) be a monotone measure space ,

m(A
⋃
B) +m(A

⋂
B) ≤ m(A) +m(B) (A ∈ D,B ∈ D)

,X = [0,∞]α1, α2, β1, β2 ∈ R+, g1, g2 ∈ L then
< α1 · f1 + α2 · f2, β1 · g1 + β2 · g2 >≤ α1/β1· < f1, g1 > +α1/β2· < f1, g2 > +α2/β1· <
f2, g1 > +α2/β2· < f2, g2 > .
Proof. < α1 · f1 + α2 · f2, β1 · g1 + β2 · g2 >≤ α1· < f1, β1 · g1 + β2 · g2 > +α2· <
f2, β1 · g1 + β2 · g2 >≤ α1· < f1, β1 · g1 > +α1· < f1, β2 · g2 > +α2· < f2, β1 · g1 > +α2· <
f2, β2 ·g2 >≤ α1/β1· < f1, g1 > +α1/β2· < f1, g2 > +α2/β1· < f2, g1 > +α2/β2· < f2, g2 >
Example 1 Let X = {x1, x2} and m a monotone set function on P (X) given by
m({x1}) = 0,m({x2}) = 0, and m(X) = 1.Let f(x1) = 0, f(x2) = 1, p(x1) = 2, p(x2) =
1. Then f = p a.e. in the ordinary sense ,i.e.,m(f 6= p) = m(x1) = 0. But for
Chequest’s integrals we have C

∫
f dm = 0 and C

∫
p dm = 1 When we have g(x) =

1 + x then (C1+x)
∫ 1
0 f dm = 0, (C1+x)

∫ 1
0 p dm = 0.When we have g(x) = 1− x then

(C1−x)
∫ 1

0
f dm = 0, (C1−x)

∫ 1

0
p dm = 1.
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