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Let m be a positive monotone set function defined on D .i.e,(X, D, m) is a mono-
tone measure space, and f non-negative function on X.By Proposition 15 we can define
Choque’s integral as follows:

DEFINITION 1 Let (X, D, m) be a monotone measure space and g : [A, B] —
[0, ¢0]. Extended Choque’s integral of measurable function f with respect to m, denoted
by (Cy) [£ fdm is defined by

— [P [ [Em({z|f(x) > g(r)}) drif f is o-measurable
(C) /A frdm = { B m({x] £(x) > g(r)}) drif f is c-measurable

Proposition 1 Let (X, D, m) be a monotone measure space and f a measurable
function. If, for every r € [A, B]

| —=m({z|f(z) > g(r)})if f is o-measurable
Glo(r)) = { —m({z|f(z) > g(r)})if f is c-measurable

and
lim g(r) = oo

T—)B

then
@) [ ram= ["(r ~ ) dG(e(r))

The integral on the right side is Stieltjes integral.
Proof. By property Stieltjes integral we have

2= 0d60) = (- 2)- Gla)f ~ [ Gl dr = @) [ fam

A A
Proposition 2 Let (X, D,m) be a monotone measure space. Let f and p measurable
functions and {f,} a sequence of measurable functions.

(1)f < p implies (Cy) [ f dm < (Cy) [4 pdm

(1)g1 < g2 implies (Cy,) [’ f dm < (Cy,) [ f dm

(2) If g(a-t) = a-g(t) for every a > 0 (when ¢t > 0 and ¢ is continuous then g(t) =t-¢g(1))
then
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(Cy) [La-fdm=a-(C,) B/afdm for every a > 0
(2") Let Z = {r|g(r) =0} and 7 is measurable then

— (B | [Em({x|0 > g(r)}) drif f is o-measurable
<Cg)/ 0-fdm= { s m({z|0 > g(r)}) drif f is c-measurable

| 0Oif f is o-measurable
] m(X)-my(2)if f is c-measurable

Where m, is ordinary measure.
(2°)(C,)) [fa-fdm=a-(C,) [{ fdm for every a =0 and m,(Z) = 0
(3)If m is an ordinary measure, then Choquet’s integral coincider with Lebesgue integral.
(4)Let F' = {r|g(r) < 1} and F' is measurable then

(@) [ xadm = m(A)-my(F) (4 € D)

(5) If m is continuous from below, then f,, T f implies that

/ fudm 1 (C / fdm

(57) If m is continuous from below, then g, T ¢ implies that

@) [ ram1 (@) [ fdm

(6) Let m be continuous from above. If f, T f and if for at least one value of n the
function f,, is bounded and m({f, > infrca,59(r)}), then

@) [ fudm 1 (@) [ am

(6’) Let m be continuous from above. If g, T ¢ and if for at least one value of n the
function g, is bounded and m({f > infre[A’B]gn(r)}), then

/ fdm

Proof. (1) When f < p we have m({:c]f(x) > g(r)}) <m({z|p(z) > g(r)}) if fand pis
o-measurable. When f and p is c-measurable we have m({z|f(z) > g(r)}) < m({z|p(z) >

9(r)})

— (B I ({z|f(xz) > g(r)}) drif f is o-measurable
(Cg)/A fd { 2 m{z|f(z) > g(r)}) drif f is c-measurable
)

- { JX m({z|p(x) > g(r

(
+ m({z|p(z) = g(r)

= Cg)/Adem

When f and p aren’t simultaneously o-measurable or c-measurable we use Proposition
7.1 from [2] and the reasoning above.

) drif p is o-measurable
) drif p is c-measurable

——
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2(r)}) < m({z|p(z) >
m({l’|p(l’) > 91(r)})

—— (B | [Em{=|f(x) > go(r)}) drif f is o-measurable
(Con) /A fdm = { /}Bm({aﬂf(x) > gZ(T)}) drif f is c-measurable

(1I')YWhen ¢; < go and f is o-measurable we have m({z|f(z) > g
g1(r)}) . When f is c-measurable we have m({z|f(z) > g2(r)}) <

< ff m({z|f(x) > g1(r)}) drif f is o-measurable
- Sm({z|f(x) > gi(r)}) drif f is c-measurable

- (Cgl> ff fdm
For (2) we obtain

— [P [ [Em({z)a- f(x) > g(r)}) drif f is o-measurable
(Cg)/ a-fdm= { fzg m({zla- f(x) > g(r)})drif f is c-measurable

_ { B m{x|f(x) > 1/a- g(r)}) drif f is o-measurable
[Zm{z|f(z) > 1/a- g(r)})drif f is c-measurable
_ { [Em{z|f(x) > g(1/a-r)}) drif f is o-measurable
f,f m({z|f(x) > )}) drif f is c-measurable

g

g(lja-r
[ oa-ff1/a-m({z|f(x) > g(1/a-r)})drif f is o-measurable
"\ a- fZ1/a-m({z|f(x) > g(1/a-7)})drif f is c-measurable

f/aa ({z|f(x) > g(r)}) drif f is o-measurable

Safim({z]f () > g(r)}) drif f is c-measurable
( ) B/a
') and (2”) (3) are obviously. - -
)(Cy) [4 xadm = (Cy) fiap—r xadm+(Cy) [ xadm = (Cy) [p xadm = m(A)-mi(F)
)Let f,, andf are ¢ and o -measurable .From f,, / f we have {z|f; > g(r)} C {z|fiz1 >
r)} for every i and r. m is continuous from below consequently m({z|f > g(r)}) =
(Ufzlfi > g(r)}) = limyoo m({z|fi > g(r)}). We use that {z[f > g(r)} = U{z|fi >
)} Let gi(r) = m({z|f; > g(r)}) = m({z[f; = g(r)}) and q(r) = m({z|f > g(r)}) =
{z|f > g(r)}).
Let f, / f,f, andf are ¢ and o -measurable .If m and g are continuous function
obviously that ¢;(r)and ¢(r) are continuous functions.From Dynni’s criterion of uniformly
converges we have ¢;(r) uniformly converges on ¢(r) in [A, B].Therefore

2 3 5&’&’&@9

)

(

E

@) [ fudm 1 (@) [ dm

because [A, B] is compact set.
Proposition 3 Let (X, D, m) be a monotone measure space.Every simple function f on
X can be represented as

J= Z(az‘ — ;1) Xa;, (12)
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where 0 = ap < a3 <---<a,and Ay D Ay D --- D A,. Extended Choquet’s integral of
a simple function f writen as (12) with respect to m can be represented as

n

__ /B
@) [ fdm =30 —ai1) - m(4) -mu(F) (13)
i=1
where g(a-t) =a-g(t), F ={r|lg(r) <1} and F, = FN[A/(a; — a;—1), B/(a; — a;—1)]If a
monotone set function m is continuous from below, then we can define the integral like
Lebesgue integral: for a simple function f defined as (12), we define the integral of f as
(13), and for a measurable function f, we define the integral of f as

@) [ fam = lim @) [ fudm

n—oo

where {f,} is a sequence of simple functions such that for every x € X, f,, T f.

Since monotone set function generally is non-additive, also Extended Choquet’s inte-
gral is generally non-additive. Concerning the additivity of Extended Choquet’s integral,
the next theorem holds.

DEFINITION 2 Let (X, D, m) be a monotone measure space,X = [0,00] L = {g :
[0, 00] — [0,00]|g(t-7)=t-g(r),t € R"} and g € L

<fg>= (@) [ fdm

Lemma 1 Let o € R™ then
<a'fvg>:a'<fvg>

Proof. It is obviously from (2 )Proposition 2.
Lemma 2 Let « € R" then

< fa-g>=1/a- < f,g>

Proof. < f,a-g>= (Cyy) [y~ fdm =

* | 5 m{z)f(x) > a-g(r)}) drif fis o-measurable
<Ca'g)/0 fdm = { Joe m({x|f(x) > a-g(r)})drif f is c-measurable

_ ] Ya-Jg m({z|f(x)

_{ > gla-7)
La- f5m({e|f(2) > o

a - r)if f is o-measurable

Q

) d(
r)})d(a - r)if f is c-measurable

Q

g

g
=1/a- { Jo°m({z|f(x) > g(2)}) dzif f is o-measurable
I m({z|f(z) > g(2)}) dzif f is c-measurable
—1 Jo° m({x|f(x) > g(r)}) drif f is o-measurable
= 1o Joem({x|f(z) > g(r)}) drif f is c-measurable

1o (@) = fdm =1/a- < f,q >
Lemma 3 Let m(AUB) + m(ANB) < m(A) +m(B) (A€ D,B € D) then < f,g1 +
Ga><< fig1 >+ < fig2>
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Proof. We have m({z|f(z) > (91 +92)(r)}) = m({z[f(z) = g1(r)} N{z|f(z) = g2(r)}) <
m({z|f(z) = gi(r)})+m({z|f(z) = g2(r)}) and m({z|f(z) > (91+92)(r)}) = m({z|f(z) >
g1(r)} N {z[f(z) > g2(r)}) < m({z[f(z) > g1(r)}) + m({z[f(z) > g2(r)}) By property
ordinary integrals we conclude < f, g1 + g2 ><< f,g1 > + < f, 92 >

Theorem 1 Let (X, D, m) be a monotone measure space ,

m(A|JB)+m(A(B) <m(A)+m(B) (A€ D,Be D)

X =1[0,00]ay, g, f1, 82 € RY, g1, 92 € L then

<ar-fitay fo,Br g1+ Bago >< an /B < frog1 > tan/Be < f1,90 > /P <
fo, 91 > Faa/ B < fa,92 > .

Proof. < ay-fita: - fo,5i- g1+ B2 g2 >< s < fi,B1- g1+ B2 g2 > +ag <
Jo.,Bi- g1 +B2-g2><Z - < f1,81- 91 > +ar- < f1, 020 g2 > g < fo, B - g1 > +ap- <
f2,B2-92 >< a1 /B < fi, 91 >+ /B < f1,92 >+ /B < fo, 1 > o /P < fo, 92 >
Example 1 Let X = {x;,25} and m a monotone set function on P(X) given by

m({z1}) = 0,m({z2}) = 0, and m(X) = 1.Let f(xy) =0, f(z2) = 1, p(x1) = 2, p(xs) =
1. Then f = pa.e. in the ordinary sense ,ie.,m(f # p) = m(z;) = 0. But for
Chequest’s integrals we have C' [ fdm = 0 and C [pdm = 1 When we have g(z) =
142 then (Ciiy) fy fdm =0, (C1,) fy pdm = 0.When we have g(z) =1 — 2 then

@) [ fam=0, (@) [ pdm=1
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