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1. Introduction

In the theory of fuzzy sets, various methods are discussed for the generation of values
of the membership function (for instance, see [5, 6, 8, 9]).

Here we will discuss a way of generation of the two degrees – of membership and of
non-membership that exist in the intuitionistic fuzzy sets (IFSs). For other approaches of
assigning membership and non-membership functions of IFSs see [7].

2. Determining membership and non-membership functions of IFSs

The definition and the basic properties of the IFSs are given in [1, 2]. The IFSs have two
functions – a membership function µA, giving the degree of membership of each element
x ∈ E, where E is a fixed universe, to a fixed set A ⊆ E, and a non-membership function
νA, giving the degree of non-membership of x to A. These functions satisfy the conditions

µA(x), νA(x) ∈ [0, 1],

µA(x) + νA(x) ≤ 1,

for every x ∈ E.
Let us have k different generators G1, G2, ..., Gk of fuzzy estimations for n different

objects O1, O2, ..., On. In [5] these generators are called “estimators”.
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Let the estimations are collected in the Index Matrix (IM; see [3, 4]

O1 O2 ... Oj ... On

G1 α1,1 α1,2 ... α1,j ... α1,n

G2 α2,1 α2,2 ... α2,j ... α2,n
...

...
...

...
...

Gi αi,1 αi,2 ... αi,j ... αi,n
...

...
...

...
...

Gk αk,1 αk,2 ... αk,j ... αk,n

On the basis of the values of the IM we can constructs the following two types of fuzzy
sets:

O∗1 = {〈Gi, αi,1〉|1 ≤ i ≤ k},

O∗2 = {〈Gi, αi,2〉|1 ≤ i ≤ k},

. . .

O∗n = {〈Gi, αi,n〉|1 ≤ i ≤ k},

and
G∗1 = {〈Ojα1,j〉|1 ≤ j ≤ n},

G∗2 = {〈Ojα2,j〉|1 ≤ j ≤ n},

. . .

G∗k = {〈Ojαk,j〉|1 ≤ j ≤ n}.

Now, using these sets we will construct different new – already – IFSs.
First, we construct the IFSs:

OI
1 = {〈Gi, αi,1,

∑
2≤s≤n

αi,s〉|1 ≤ i ≤ k},

OI
2 = {〈Gi, αi,2,

∑
1≤s≤n; s 6=2

αi,s〉|1 ≤ i ≤ k},

. . .

OI
n = {〈Gi, αi,n,

∑
1≤s≤n−1

αi,s〉|1 ≤ i ≤ k},

or
OI

j = {〈Gi, αi,j,
∑

1≤s≤n; s 6=j

αi,s〉|1 ≤ i ≤ k}, for j = 1, 2, ..., n;

and
GI

1 = {〈Oj, α1,j,
∑

2≤s≤n
αs,j〉|1 ≤ j ≤ n},

GI
2 = {〈Oj, α2,j,

∑
1≤s≤n; s 6=2

αs,j〉|1 ≤ j ≤ n},

. . .

GI
k = {〈Oj, αk,j,

∑
1≤s≤n−1

αj,s〉|1 ≤ j ≤ n},
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or
GI

i = {〈Oj, αi,j,
∑

1≤s≤n; s 6=i

αj,s〉|1 ≤ j ≤ n}, for j = 1, 2, ..., k;

Second, we construct the IFSs:

GI
max,min = {〈Oj, max

1≤i≤n
αi,j, min

1≤i≤n
αi,j〉|1 ≤ j ≤ n},

GI
av = {〈Oj,

1

k

k∑
i=1

αi,j,
1

k

∑
1≤s≤n;s6=j

k∑
i=1

αi,s〉|1 ≤ j ≤ n},

GI
min,max = {〈Oj, min

1≤i≤n
αi,j, max

1≤i≤n
αi,j〉|1 ≤ j ≤ n}.

Now, we will illustrate the constructions, introduced by us.
Let five experts E1, E2, E3, E4 and E5 offer their evaluations of the percentage of votes,

obtained by the political parties P1, P2 and P3:

P1 P2 P3

E1 32% 9% 37%
E2 27% 7% 39%
E3 26% 11% 35%
E4 31% 8% 39%
E5 29% 9% 41%

Now, we are able to generate the fuzzy sets

P ∗1 = {〈E1, 0.32〉, 〈E2, 0.27〉, 〈E3, 0.26〉, 〈E4, 0.31〉, 〈E5, 0.29〉},

P ∗2 = {〈E1, 0.09〉, 〈E2, 0.07〉, 〈E3, 0.11〉, 〈E4, 0.08〉, 〈E5, 0.09〉},

P ∗3 = {〈E1, 0.37〉, 〈E2, 0.39〉, 〈E3, 0.35〉, 〈E4, 0.39〉, 〈E5, 0.41〉},

E∗1 = {〈P1, 0.32〉, 〈P2, 0.09〉, 〈P3, 0.37〉},

E∗2 = {〈P1, 0.27〉, 〈P2, 0.07〉, 〈P3, 0.39〉},

E∗3 = {〈P1, 0.26〉, 〈P2, 0.11〉, 〈P3, 0.35〉},

E∗4 = {〈P1, 0.31〉, 〈P2, 0.08〉, 〈P3, 0.39〉},

E∗5 = {〈P1, 0.29〉, 〈P2, 0.09〉, 〈P3, 0.41〉}.

We can aggregate the last five sets, e.g., by operation @ and will obtain the fuzzy set

EFS = {〈P1, 0.29〉, 〈P2, 0.088〉, 〈P3, 0.382〉}.

Now, we show why we can use the above information for constructing IFSs.
It is easily to figure out that if expert E1 believes that party P1 would obtain 32% of

the election votes, then he thinks that 68% of the voters are against this party. If we take
for granted that all the five experts are equally competent, i.e. their opinions are of equal
worth, then we may conclude that party P1 will receive between 26% and 32% of the votes,
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therefore, the opposers of this party will count between 68% and 74% of the voters. Now,
an IFS can be constructed for the universe {P1, P2, P3} that would have the form:

EIFS,1 = {〈P1, 0.26, 0.68〉, 〈P2, 0.07, 0.89〉, 〈P3, 0.35, 0.59〉}.

This shows that at least 26% of the voters would support party P1 and at least 68% would
oppose it.

Another possible IFS that we can construct on the basis of the above data, is

EIFS,2 = {〈P1, 0.29, 0.47〉, 〈P2, 0.088, 0.672〉, 〈P3, 0.382, 0.378〉}.

The µ-components of this IFS are obtained directly from EFS, while the ν-components
are sums of the µ-components of the other two parties.

Following the above formulae, we can construct the next IFSs:

P ∗1 = {〈E1, 0.32, 0.46〉, 〈E2, 0.27, 0.46〉, 〈E3, 0.26, 0.46〉, 〈E4, 0.31, 0.47〉, 〈E5, 0.29, 0.50〉},

P ∗2 = {〈E1, 0.09, 0.59〉, 〈E2, 0.07, 0.66〉, 〈E3, 0.11, 0.61〉, 〈E4, 0.08, 0.70〉, 〈E5, 0.09, 0.70〉},

P ∗3 = {〈E1, 0.37, 0.41〉, 〈E2, 0.39, 0.34〉, 〈E3, 0.35, 0.37〉, 〈E4, 0.39, 0.39〉, 〈E5, 0.41, 0.38〉},

E∗1 = {〈P1, 0.32, 0.46〉, 〈P2, 0.09, 0.59〉, 〈P3, 0.37, 0.41〉},

E∗2 = {〈P1, 0.27, 0.46〉, 〈P2, 0.07, 0.66〉, 〈P3, 0.39, 0.34〉},

E∗3 = {〈P1, 0.26, 0.46〉, 〈P2, 0.11, 0.61〉, 〈P3, 0.35, 0.37〉},

E∗4 = {〈P1, 0.31, 0.47〉, 〈P2, 0.08, 0.70〉, 〈P3, 0.39, 0.39〉},

E∗5 = {〈P1, 0.29, 0.50〉, 〈P2, 0.09, 0.70〉, 〈P3, 0.41, 0.38〉}.

Obviously, the estimations of the fuzzy sets, like those of the IFS, are constructive
objects, as this is discuss in [2].

3. Conclusions

We have presented some ways of determining membership and non-membership func-
tions characterizing IFSs.
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