Averaging of intuitionistic fuzzy differential equations

A. El Allaoui, S. Melliani, Y. Allaoui and L. S. Chadli

LMACS, Laboratoire de Mathématiques Appliquées \& Calcul Scientifique
Sultan Moulay Slimane University
PO Box 523, 23000 Beni Mellal, Morocco

Abstract

In this paper, we shall prove and discuss averaging of intuitionistic fuzzy differential equations. The main results generalize previous ones in fuzzy sets theory.

Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy differential equations.
AMS Classification: 03E72, 34A07.

1 Introduction

In 1983, K. Atanassov laid the foundation for the development of the theory of intuitionistic fuzzy sets [1-3]. This concept is a generalization of fuzzy theory introduced by L. Zadeh in 1965 [12].

In [6], O. Kaleva gave the existence and uniqueness for a solution of the fuzzy differential equation

$$
x^{\prime}(t)=f(t, x(t))
$$

In [5], S. Melliani et al. discussed the existence and uniqueness for a solution of the intuitionistic fuzzy differential equation

$$
x^{\prime}(t)=f(t, x(t)), \quad x(0)=x_{0}
$$

Several works made in the study of the averaging of fuzzy differential equations $[7,8,11]$.

In this paper, we establish averaging of intuitionistic fuzzy differential equations in order to generalize the results stated for fuzzy differential equations.

Consider the following problem with a small parameter ε :

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f\left(\frac{t}{\varepsilon}, u(t)\right), \tag{1}\\
u(0)=u_{0} \in I F .
\end{array}\right.
$$

where $f: \mathbb{R}^{+} \times U \longrightarrow I F, U \subseteq I F$ is an open subset and $\varepsilon>0$ is a small parameter.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.

Definition 1. We denote

$$
I F=\left\{(u, v): \mathbb{R} \rightarrow[0,1]^{2} \mid \forall x \in \mathbb{R} / 0 \leq u(x)+v(x) \leq 1\right\}
$$

where

1. (u, v) is normal i.e there exists $x_{0}, x_{1} \in \mathbb{R}$ such that $u\left(x_{0}\right)=1$ and $v\left(x_{1}\right)=1$.
2. u is fuzzy convex and v is fuzzy concave.
3. u is upper semicontinuous and v is lower semicontinuous
4. $\operatorname{supp}(u, v)=\operatorname{cl}(\{x \in \mathbb{R}: v(x)<1\})$ is bounded.

For $\alpha \in[0,1]$ and $(u, v) \in I F$, we define

$$
[(u, v)]^{\alpha}=\{x \in \mathbb{R} \mid v(x) \leq 1-\alpha\}
$$

and

$$
[(u, v)]_{\alpha}=\{x \in \mathbb{R} \mid u(x) \geq \alpha\}
$$

Remark 1. We can consider $[(u, v)]_{\alpha}$ as $[u]^{\alpha}$ and $[(u, v)]^{\alpha}$ as $[1-v]^{\alpha}$ in the fuzzy case.
Definition 2. The intuitionistic fuzzy zero is intuitionistic fuzzy set defined by

$$
0_{(1,0)}(x)= \begin{cases}(1,0), & x=0 \\ (0,1), & x \neq 0\end{cases}
$$

Definition 3. Let $(u, v),\left(u^{\prime}, v^{\prime}\right) \in I F$ and $\lambda \in \mathbb{R}$, we define the addition by :

$$
\begin{gathered}
\left((u, v) \oplus\left(u^{\prime}, v^{\prime}\right)\right)(z)=\left(\sup _{z=x+y} \min \left(u(x), u^{\prime}(y)\right) ; \inf _{z=x+y} \max \left(v(x), v^{\prime}(y)\right)\right) \\
\lambda(u, v)=\left\{\begin{array}{cl}
(\lambda u, \lambda v) & \text { if } \lambda \neq 0 \\
0_{(0,1)} & \text { if } \lambda=0
\end{array}\right.
\end{gathered}
$$

According to Zadeh's extension principle, we have addition and scalar multiplication in intuitionistic fuzzy number space $I F$ as follows:

$$
\begin{gathered}
{[(u, v) \oplus(z, w)]^{\alpha}=[(u, v)]^{\alpha}+[(z, w)]^{\alpha}} \\
{[\lambda(u, v)]^{\alpha}=\lambda[(u, v)]^{\alpha}} \\
{[(u, v) \oplus(z, w)]_{\alpha}=[(u, v)]_{\alpha}+[(z, w)]_{\alpha}} \\
{[\lambda(u, v)]_{\alpha}=\lambda[(u, v)]_{\alpha}}
\end{gathered}
$$

where $(u, v),(z, w) \in I F$ and $\lambda \in \mathbb{R}$.
We denote

$$
\begin{gathered}
{[(u, v)]_{l}^{+}(\alpha)=\inf \{x \in \mathbb{R} \mid u(x) \geq \alpha\}} \\
{[(u, v)]_{r}^{+}(\alpha)=\sup \{x \in \mathbb{R} \mid u(x) \geq \alpha\}} \\
{[(u, v)]_{l}^{-}(\alpha)=\inf \{x \in \mathbb{R} \mid v(x) \leq 1-\alpha\}} \\
{[(u, v)]_{r}^{-}(\alpha)=\sup \{x \in \mathbb{R} \mid v(x) \leq 1-\alpha\}}
\end{gathered}
$$

Remark 2.

$$
\begin{aligned}
{[(u, v)]_{\alpha} } & =\left[[(u, v)]_{l}^{+}(\alpha),[(u, v)]_{r}^{+}(\alpha)\right] \\
{[(u, v)]^{\alpha} } & =\left[[(u, v)]_{l}^{-}(\alpha),[(u, v)]_{r}^{-}(\alpha)\right]
\end{aligned}
$$

Theorem 1. ([10]) let $\mathcal{M}=\left\{M_{\alpha}, M^{\alpha}: \alpha \in[0,1]\right\}$ be a family of subsets in \mathbb{R} satisfying Conditions (i) - (iv)
i) $\alpha \leq \beta \Rightarrow M_{\beta} \subset M_{\alpha}$ and $M^{\beta} \subset M^{\alpha}$
ii) M_{α} and M^{α} are nonempty compact convex sets in \mathbb{R} for each $\alpha \in[0,1]$.
iii) for any nondecreasing sequence $\alpha_{i} \rightarrow \alpha$ on $[0,1]$, we have $M_{\alpha}=\bigcap_{i} M_{\alpha_{i}}$ and $M^{\alpha}=$ $\bigcap_{i} M^{\alpha_{i}}$.
iv) For each $\alpha \in[0,1], M_{\alpha} \subset M^{\alpha}$ and define u and v, by

$$
\begin{gathered}
u(x)=\left\{\begin{array}{cc}
0 & \text { if } x \notin M_{0} \\
\sup \left\{\alpha \in[0,1]: x \in M_{\alpha}\right\} & \text { if } x \in M_{0}
\end{array}\right. \\
v(x)=\left\{\begin{array}{cc}
1 & \text { if } x \notin M^{0} \\
1-\sup \left\{\alpha \in[0,1]: x \in M^{\alpha}\right\} & \text { if } x \in M^{0}
\end{array}\right.
\end{gathered}
$$

Then $(u, v) \in I F$.
The space $I F$ is metrizable by the distance of the following form:

$$
\begin{aligned}
d_{\infty}((u, v),(z, w)) & =\frac{1}{4} \sup _{0<\alpha \leq 1}\left|[(u, v)]_{r}^{+}(\alpha)-[(z, w)]_{r}^{+}(\alpha)\right| \\
& +\frac{1}{4} \sup _{0<\alpha \leq 1}\left|[(u, v)]_{l}^{+}(\alpha)-[(z, w)]_{l}^{+}(\alpha)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{4} \sup _{0<\alpha \leq 1}\left|[(u, v)]_{r}^{-}(\alpha)-[(z, w)]_{r}^{-}(\alpha)\right| \\
& +\frac{1}{4} \sup _{0<\alpha \leq 1}\left|[(u, v)]_{l}^{-}(\alpha)-[(z, w)]_{l}^{-}(\alpha)\right|
\end{aligned}
$$

where $|$.$| denotes the usual Euclidean norm in \mathbb{R}$.
Theorem 2. ([10]) $\left(I F, d_{\infty}\right)$ is a complete metric space.
On $I F$, we define the H-difference [9] as follows: $u \ominus v$ has sense if there exists $w \in I F$ such that

$$
u \Theta v=w \Leftrightarrow u=v+w
$$

Definition 4. A function $f: I \longrightarrow I F$ is continuous at a point $t_{0} \in I$ if,

$$
\forall \varepsilon>0, \exists \eta>0, \quad t \in I \quad\left|t-t_{0}\right|<\eta \Rightarrow d_{\infty}\left(f(t), f\left(t_{0}\right)\right)<\varepsilon
$$

f continuous on I if it is continuous at every point $t_{0} \in I$.
Definition 5. A function $f: I \times I F \longrightarrow I F$ is continuous at a point $\left(t_{0}, u_{0}\right) \in I \times I F$ if,
$\forall \varepsilon>0, \exists \eta>0, \quad(t, u) \in I \times I F \quad\left|t-t_{0}\right|<\eta$ and $d_{\infty}\left(u, u_{0}\right)<\eta \Rightarrow d_{\infty}\left(f(t, u), f\left(t_{0}, u_{0}\right)\right)<\varepsilon$. f continuous on $I \times I F$ if it is continuous at every point $\left(t_{0}, u_{0}\right) \in I$.

Definition 6. A function $f: I \times I F \longrightarrow I F$ is continuous in $u_{0} \in I F$ uniformly with respect to $t \in I$ if, for any $u \in I F$

$$
\forall \varepsilon>0, \exists \eta>0, \quad u \in I F, d_{\infty}\left(u, u_{0}\right)<\eta \Rightarrow d_{\infty}\left(f(t, u), f\left(t_{0}, u_{0}\right)\right)<\varepsilon, \quad \forall t \in I
$$

Definition 7. A mapping $f:[a, b] \longrightarrow I F$ is said to be differentiable at t_{0} if there exist $f^{\prime}\left(t_{0}\right) \in$ IF such that the following limits:

$$
\lim _{h \rightarrow 0^{+}} \frac{f\left(t_{0}+h\right) \Theta f\left(t_{0}\right)}{h} \text { and } \lim _{h \rightarrow 0^{+}} \frac{f\left(t_{0}\right) \Theta f\left(t_{0}-h\right)}{h}
$$

exist and they are equal to $f^{\prime}\left(t_{0}\right)$.
Theorem 3. ([5]) Let $f: I \longrightarrow I F$ be differentiable and f^{\prime} is integrable over I. Let $a \in I$, then, for each $t \in I$, we have

$$
f(t)=f(a)+\int_{a}^{t} f^{\prime}(s) d s
$$

3 Main results

Definition 8. A mapping $u:[0, a) \longrightarrow U, 0<a \leq \infty$, is called a solution of problem (1) if it is continuous, for all $t \in[0, a)$ and satisfies the integral equation

$$
u(t)=u_{0}+\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u(s)\right) d s
$$

Definition 9. A mapping u is called a maximal solution of problem (1) if there exists a maximal positive interval of definition I of u, such that u is a solution of (1) on I.

We associate Eq.(1) with the averaging equation

$$
\left\{\begin{array}{l}
v^{\prime}(t)=\bar{f}(v(t)) \tag{2}\\
v(0)=u_{0}
\end{array}\right.
$$

Where the function $\bar{f}: U \longrightarrow I F$, is such that,

$$
\bar{f}(u)=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} f(s, u) d s, \quad \forall u \in U
$$

with the metric d_{∞}.
To establish our results, we introduce the following assumptions:
(i) the function $f: \mathbb{R}^{+} \times U \longrightarrow I F$ is continuous;
(ii) the function f is continuous in $u \in U$ uniformly with respect to $t \in \mathbb{R}^{+}$;
(iii) there exists a locally integrable function $\varphi: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$and $M>0$ such that

$$
d_{\infty}\left(f(t, u), 0_{(1,0)}\right) \leq \varphi(t), \quad \forall t \in \mathbb{R}^{+}, \quad \forall u \in U,
$$

and

$$
\int_{t_{1}}^{t_{2}} \varphi(t) d t \leq M\left(t_{2}-t_{1}\right), \quad \forall t_{1}, t_{2} \in \mathbb{R}^{+}
$$

(iv) the limit

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} f(s, u) d s=\bar{f}(u)
$$

exists for all $u \in U$;
(v) there exists a constant $N>0$ such that, for all continuous fuctions $u, v: \mathbb{R}^{+} \longrightarrow U$ and $t \geq 0$,

$$
d_{\infty}\left(\int_{0}^{t} \bar{f}(u(s)) d s, \int_{0}^{t} \bar{f}(v(s)) d s\right) \leq N \int_{0}^{t} d_{\infty}(u(s), v(s)) d s
$$

To establish our main result we will prove the following lemmas:
Lemma 1. Let assumptions (ii), (iii) and (iv) be satisfied. Then the function \bar{f} is continuous and

$$
d_{\infty}\left(\bar{f}(u), 0_{(1,0)}\right) \leq M, \quad \forall u \in U .
$$

Proof. Let $u_{1} \in U$, From the assumption (ii), we get, for all $\varepsilon>0$, there exists $\delta>0$ such that, $\forall u \in U$

$$
d_{\infty}\left(u, u_{1}\right)<\delta \Rightarrow d_{\infty}\left(f(s, u), f\left(s, u_{1}\right)\right)<\frac{\varepsilon}{2}, \forall s \in \mathbb{R}^{+}
$$

And, by assumption (iv), we have, for all $\eta>0$, there exists $T_{0}>0$ such that

$$
\forall T \geq T_{0}, \quad d_{\infty}\left(\frac{1}{T} \int_{0}^{T} f(s, u) d s, \bar{f}(u)\right)<\eta, \forall u \in U
$$

Hence,

$$
\begin{aligned}
& d_{\infty}\left(\bar{f}(u), \bar{f}\left(u_{1}\right)\right) \\
& \leq d_{\infty}\left(\bar{f}(u), \frac{1}{T} \int_{0}^{T} f(s, u) d s\right)+d_{\infty}\left(\frac{1}{T} \int_{0}^{T} f(s, u) d s, \frac{1}{T} \int_{0}^{T} f\left(s, u_{1}\right) d s\right) \\
& +d_{\infty}\left(\frac{1}{T} \int_{0}^{T} f\left(s, u_{1}\right) d s, \bar{f}\left(u_{1}\right)\right) \leq 2 \eta+\frac{1}{T} \int_{0}^{T} d_{\infty}\left(f(s, u), f\left(s, u_{1}\right)\right) d s \\
& \leq 2 \eta+\frac{\varepsilon}{2}
\end{aligned}
$$

For $\eta=\frac{\varepsilon}{4}$, we get

$$
d_{\infty}\left(\bar{f}(u), \bar{f}\left(u_{1}\right)\right) \leq \varepsilon .
$$

Then, \bar{f} is continuous at u_{1}.
From the assumption $(i v)$, we have for all $\eta>0$, there exists $T_{0}>0$ such that $\forall T \geq T_{0}$

$$
d_{\infty}\left(\bar{f}(u), \frac{1}{T} \int_{0}^{T} f(s, u) d s\right)<\eta, \quad \forall u \in U
$$

Therefore,

$$
\begin{aligned}
d_{\infty}\left(\bar{f}(u), 0_{(1,0)}\right) & \leq d_{\infty}\left(\bar{f}(u), \frac{1}{T} \int_{0}^{T} f(s, u) d s\right)+d_{\infty}\left(\frac{1}{T} \int_{0}^{T} f(s, u) d s, 0_{(1,0)}\right) \\
& \leq \eta+\frac{1}{T} \int_{0}^{T} d \infty\left(f(s, u) d s, 0_{(1,0)}\right) \\
& \leq \eta+M
\end{aligned}
$$

Since η is arbitrary, hence the result is proved.
Lemma 2. Let assumption (iv) be satisfied. Then for all $b>0$ and $\alpha>0$, we have

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, b]} d_{\infty}\left(\frac{\varepsilon}{\alpha} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right)=0, \quad \forall u \in U
$$

Proof. Let $u \in U, b>0$ and $\alpha>0$. It is easy to note that from (iv), if $t=0$, we have

$$
\lim _{\varepsilon \rightarrow 0} d_{\infty}\left(\frac{\varepsilon}{\alpha} \int_{0}^{\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right)=0, \quad \forall u \in U
$$

Now, for $t \in(0, b]$, we have that

$$
\frac{\varepsilon}{\alpha} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s=\frac{\varepsilon}{\alpha} \int_{0}^{\frac{t}{\varepsilon}} f(s, u) d s+\frac{\varepsilon}{\alpha} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s
$$

since

$$
\frac{\varepsilon}{\alpha}=\frac{1}{\frac{\alpha}{\varepsilon}}=\frac{\frac{t}{\alpha}+1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}},
$$

Thus,

$$
\begin{align*}
& \frac{t}{\alpha} \frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s+\frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s \\
& =\frac{t}{\alpha} \frac{1}{\varepsilon} \int_{0}^{\frac{t}{\varepsilon}} f(s, u) d s+\frac{\varepsilon}{\alpha} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \tag{3}
\end{align*}
$$

Therefore, from (3), we have

$$
\begin{aligned}
& d_{\infty}\left(\frac{\varepsilon}{\alpha} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right) \\
& =d_{\infty}\left(\frac{t}{\alpha} \frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s\right. \\
& \left.+\frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s \ominus \frac{t}{\alpha} \frac{1}{\frac{t}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}} f(s, u) d s, \bar{f}(u)+\frac{t}{\alpha} \bar{f}(u) \ominus \frac{t}{\alpha} \bar{f}(u)\right) \\
& \leq \frac{t}{\alpha} d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right)+d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right) \\
& +\frac{t}{\alpha} d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sup _{t \in(0, b]} d_{\infty}\left(\frac{\varepsilon}{\alpha} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right) & \leq \frac{b}{\alpha} \sup _{t \in(0, b]} d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right) \\
& +\sup _{t \in(0, b]} d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right) \\
& +\frac{b}{\alpha} \sup _{t \in(0, b]} d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right) .
\end{aligned}
$$

Now, from (iv), we get that

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in(0, b]} d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right)=0
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in(0, b]} d_{\infty}\left(\frac{1}{\frac{t}{\varepsilon}} \int_{0}^{\frac{t}{\varepsilon}} f(s, u) d s, \bar{f}(u)\right)=0 .
$$

Then, the result is proved.

Corollary 1. Let assumptions (i), (iii) and (iv) be satisfied. Let u_{ε} be a maximal solution of (1) on $\left[0, a_{\varepsilon}\right), 0<a_{\varepsilon} \leq \infty$. Then for all $b \in\left[0, a_{\varepsilon}\right)$ and $\alpha>0$, we have

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, b]} d_{\infty}\left(\frac{\varepsilon}{\alpha} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{\alpha}{\varepsilon}} f\left(s, u_{\varepsilon}\right) d s, \bar{f}\left(u_{\varepsilon}\right)\right)=0 .
$$

Proof. It is easy to prove that from (i) and $(i i i), u_{\varepsilon}$ is well defined. Then the result follows directly from Lemma 2.

Lemma 3. Let assumptions $(i)-(i v)$ be satisfied. Let u_{ε} be a maximal solution of (1) on $\left[0, a_{\varepsilon}\right)$, $0<a_{\varepsilon} \leq \infty$. Then for all $b \in\left[0, a_{\varepsilon}\right)$, we have

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, b]} d_{\infty}\left(\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right)=0 .
$$

Proof. Let $b \in\left[0, a_{\varepsilon}\right)$, We divide the segment $[0, b]$ into n equal parts by the points t_{i},

$$
t_{0}=0<t_{1}<\cdots<t_{n}=b, \quad n \in \mathbb{N},
$$

let $e_{\varepsilon}=t_{i+1}-t_{i}, i=0,1, \cdots, n-1$ with $\lim _{\varepsilon \rightarrow 0} e_{\varepsilon}=0$.
For $t \in\left[t_{p}, t_{p+1}\right], p \in\{0,1, \cdots, n-1\}$, we have

$$
\begin{align*}
& d_{\infty}\left(\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}\left(u_{\varepsilon}(s) d s\right)\right) \\
& =d_{\infty}\left(\int_{0}^{t_{p}} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s+\int_{t_{p}}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t_{p}} \bar{f}\left(u_{\varepsilon}(s)\right) d s+\int_{t_{p}}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& \leq d_{\infty}\left(\int_{0}^{t_{p}} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t_{p}} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& +d_{\infty}\left(\int_{t_{p}}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{t_{p}}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \tag{4}\\
& \leq \sum_{i=0}^{p-1} d_{\infty}\left(\int_{t_{i}}^{t_{i+1}} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{t_{i}}^{t_{i+1}} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& +d_{\infty}\left(\int_{t_{p}}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{t_{p}}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) .
\end{align*}
$$

From (iii) and Lemma 1, we have

$$
\begin{align*}
& d_{\infty}\left(\int_{t_{p}}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{t_{p}}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& \leq d_{\infty}\left(\int_{t_{p}}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, 0_{(1,0)}\right)+d_{\infty}\left(\int_{t_{p}}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s, 0_{(1,0)}\right) \tag{5}\\
& \leq \int_{t_{p}}^{t} d_{\infty}\left(f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, 0_{(1,0)}\right)+\int_{t_{p}}^{t} d_{\infty}\left(\bar{f}\left(u_{\varepsilon}(s)\right) d s, 0_{(1,0)}\right) \\
& \leq 2 M\left(t-t_{p}\right) \\
& \leq 2 M\left(t_{p+1}-t_{p}\right) \leq 2 M e_{\varepsilon} .
\end{align*}
$$

From $i=0,1, \cdots, n$ and $s \in\left[t_{i}, t_{i+1}\right]$ and from (iii), we have

$$
\begin{aligned}
d_{\infty}\left(u_{\varepsilon}(s), u_{\varepsilon}\left(t_{i}\right)\right) & =d_{\infty}\left(u_{0}+\int_{0}^{s} f\left(\tau, u_{\varepsilon}(\tau)\right) d \tau, u_{0}+\int_{0}^{t_{i}} f\left(\tau, u_{\varepsilon}(\tau)\right) d \tau\right) \\
& \leq d_{\infty}\left(\int_{0}^{t_{i}} f\left(\tau, u_{\varepsilon}(\tau)\right) d \tau+\int_{t_{i}}^{s} f\left(\tau, u_{\varepsilon}(\tau)\right) d \tau, \int_{0}^{t_{i}} f\left(\tau, u_{\varepsilon}(\tau)\right) d \tau\right) \\
& \leq d_{\infty}\left(\int_{t_{i}}^{s} f\left(\tau, u_{\varepsilon}(\tau)\right) d \tau, 0_{(1,0)}\right) \\
& \leq \int_{t_{i}}^{s} d_{\infty}\left(f\left(\tau, u_{\varepsilon}(\tau)\right), 0_{(1,0)}\right) d \tau \\
& \leq M\left(s-t_{i}\right) \leq M e_{\varepsilon}
\end{aligned}
$$

Hence, by (ii), we get

$$
\begin{equation*}
d_{\infty}\left(f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right), f\left(\frac{s}{\varepsilon}, u_{\varepsilon}\left(t_{i}\right)\right)\right) \leq \beta_{\varepsilon}^{i}, \quad \text { with } \quad \lim _{\varepsilon \rightarrow 0} \beta_{\varepsilon}^{i}=0 \tag{6}
\end{equation*}
$$

and from Lemma 1,

$$
\begin{equation*}
d_{\infty}\left(\bar{f}\left(u_{\varepsilon}(s)\right), \bar{f}\left(u_{\varepsilon}\left(t_{i}\right)\right)\right) \leq \gamma_{\varepsilon}^{i}, \quad \text { with } \quad \lim _{\varepsilon \rightarrow 0} \gamma_{\varepsilon}^{i}=0 . \tag{7}
\end{equation*}
$$

Then, from (4), (5), (6) and (7), it follows that

$$
\begin{align*}
& d_{\infty}\left(\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}\left(u_{\varepsilon}(s) d s\right)\right) \\
& \left.\leq \sum_{i=0}^{p-1} d_{\infty}\left(\int_{t_{i}}^{t_{i+1}} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{t_{i}}^{t_{i+1}} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}\left(t_{i}\right)\right) d s\right)\right) \\
& +\sum_{i=0}^{p-1} d_{\infty}\left(\int_{t_{i}}^{t_{i+1}} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}\left(t_{i}\right)\right) d s, \int_{t_{i}}^{t_{i+1}} \bar{f}\left(u_{\varepsilon}\left(t_{i}\right)\right) d s\right) \\
& +\sum_{i=0}^{p-1} d_{\infty}\left(\int_{t_{i}}^{t_{i+1}} \bar{f}\left(u_{\varepsilon}\left(t_{i}\right)\right) d s, \int_{t_{i}}^{t_{i+1}} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& +d_{\infty}\left(\int_{t_{p}}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{t_{p}}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& \leq \sum_{i=0}^{p-1} e_{\varepsilon} d_{\infty}\left(\frac{\varepsilon}{e_{\varepsilon}} \int_{\frac{t_{i}}{\varepsilon}}^{\frac{t_{i}}{\varepsilon}} \frac{e_{\varepsilon}}{\varepsilon} f\left(s, u_{\varepsilon}\left(t_{i}\right)\right) d s, \bar{f}\left(u_{\varepsilon}\left(t_{i}\right)\right)\right) \\
& +\sum_{i=0}^{p-1} \int_{t_{i}}^{t_{i+1}}\left(\beta_{\varepsilon}^{i}+\gamma_{\varepsilon}^{i}\right) d s+2 M e_{\varepsilon} \tag{8}\\
& \leq \sup _{t \in[0, b]} d_{\infty}\left(\frac{\varepsilon}{e_{\varepsilon}} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}}+\frac{e_{\varepsilon}}{\varepsilon} f\left(s, u_{\varepsilon}(t)\right) d s, \bar{f}\left(u_{\varepsilon}(t)\right) \sum_{i=0}^{p-1} e_{\varepsilon}\right. \\
& +\max _{i \in\{0,1, \cdots, p-1\}}\left(\beta_{\varepsilon}^{i}+\gamma_{\varepsilon}^{i}\right) \sum_{i=0}^{p-1} \int_{t_{i}}^{t_{i+1}} d s+2 M e_{\varepsilon}
\end{align*}
$$

$$
\begin{aligned}
& \leq \sup _{t \in[0, b]} d_{\infty}\left(\frac{\varepsilon}{e_{\varepsilon}} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{e_{\varepsilon}}{\varepsilon}} f\left(s, u_{\varepsilon}(t)\right) d s, \bar{f}\left(u_{\varepsilon}(t)\right)\right) \sum_{i=0}^{p-1} e_{\varepsilon} \\
& +\max _{i \in\{0,1, \cdots, p-1\}}\left(\beta_{\varepsilon}^{i}+\gamma_{\varepsilon}^{i}\right) \sum_{i=0}^{p-1} \int_{t_{i}}^{t_{i+1}} d s+2 M e_{\varepsilon} \\
& \leq \sup _{t \in[0, b]} d_{\infty}\left(\frac{\varepsilon}{e_{\varepsilon}} \int_{\frac{t}{\varepsilon}}^{\frac{t}{\varepsilon}+\frac{e_{\varepsilon}}{\varepsilon}} f\left(s, u_{\varepsilon}(t)\right) d s, \bar{f}\left(u_{\varepsilon}(t)\right)\right) \sum_{i=0}^{p-1}\left(t_{i+1}-t_{i}\right) \\
& +\max _{i \in\{0,1, \cdots, p-1\}}\left(\beta_{\varepsilon}^{i}+\gamma_{\varepsilon}^{i}\right) \sum_{i=0}^{p-1}\left(t_{i+1}-t_{i}\right)+2 M e_{\varepsilon} \\
& \leq b \sup _{t \in[0, b]} d_{\infty}\left(\frac{\varepsilon}{e_{\varepsilon}} \int_{\frac{t}{\varepsilon}}^{\varepsilon} \frac{t}{\varepsilon}+\frac{e_{\varepsilon}}{\varepsilon} f\left(s, u_{\varepsilon}(t)\right) d s, \bar{f}\left(u_{\varepsilon}(t)\right)\right) \\
& +b \max _{i \in\{0,1, \cdots, p-1\}}\left(\beta_{\varepsilon}^{i}+\gamma_{\varepsilon}^{i}\right)+2 M e_{\varepsilon} .
\end{aligned}
$$

Consequently, according to Corollary $1,(6),(7)$ and (8), the result is obtained.
Now, we are in the position to establish our result.
Theorem 4. Let assumptions $(i i i)-(v)$ be satisfied. Let $u_{0} \in U, u_{\varepsilon}$ be a maximal solution of (1) on $\left[0, a_{\varepsilon}\right), 0<a_{\varepsilon} \leq \infty$ and v be the maximal solution of (2) on $[0, a), 0<a \leq \infty$. Then for all $b \in\left(0, a_{\varepsilon}\right) \cap(0, a)$ and $\xi>0$, there exists $\kappa_{b}^{\xi}>0$ such that

$$
d_{\infty}\left(u_{\varepsilon}(t), v(t)\right)<\xi, \quad \forall t \in\left(0, \kappa_{b}^{\xi}\right], \quad t \in[0, b]
$$

Proof. For $t \in[0, b]$ and from (v), we have

$$
\begin{aligned}
d_{\infty}\left(u_{\varepsilon}(t), v(t)\right) & =d_{\infty}\left(u_{0}+\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, u_{0}+\int_{0}^{t} \bar{f}(v(s)) d s\right) \\
& \leq d_{\infty}\left(\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}(v(s)) d s\right) \\
& \leq d_{\infty}\left(\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& +d_{\infty}\left(\int_{0}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}(v(s)) d s\right) \\
& \leq \sup _{t \in[0, b]} d_{\infty}\left(\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right) \\
& +N \int_{0}^{t} d_{\infty}\left(u_{\varepsilon}(s), v(s)\right) d s .
\end{aligned}
$$

Denote

$$
\theta_{\varepsilon}=\sup _{t \in[0, b]} d_{\infty}\left(\int_{0}^{t} f\left(\frac{s}{\varepsilon}, u_{\varepsilon}(s)\right) d s, \int_{0}^{t} \bar{f}\left(u_{\varepsilon}(s)\right) d s\right)
$$

From Lemma 3, we have $\lim _{\varepsilon \rightarrow 0} \theta_{\varepsilon}=0$. By Gronwall Lemma, we get

$$
d_{\infty}\left(u_{\varepsilon}(t), v(t)\right) \leq \theta_{\varepsilon} e^{N t} \leq \theta_{\varepsilon} e^{N b}
$$

Finally, we obtain

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, b]} d_{\infty}\left(u_{\varepsilon}(t), v(t)\right)=0 .
$$

This completes the proof.

References

[1] Atanassov K. T. (1983). Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6.
[2] Atanassov, K. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-96.
[3] Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer PhysicaVerlag, Heidelberg.
[4] Atanassov, K. T., Vassilev, P. M., \& Tsvetkov, R. T. (2013). Intuitionistic Fuzzy Sets, Measures and Integrals, Bulgarian Academic Monographs Series, Vol. 12, "Professor Marin Drinov" Academic Publishing House, Sofia.
[5] Ettoussi, R., Melliani, S., Elomari, M., \& Chadli, L. S. (2015). Solution of intuitionistic fuzzy differential equations by successive approximations method, Notes on Intuitionistic Fuzzy Sets, 21(2), 51-62.
[6] Kaleva, O. (1990). The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35(3), 389-396.
[7] Kichmarenko, O. D., \& Skripnik, N. V. (2008). Averaging of fuzzy differential equations with delay, Nonlinear Oscillations, 11(3), 331-344.
[8] Kichmarenko, O., \& Skripnik, N. V. (2011). One scheme of averaging of fuzzy differential equations with maxima, J. Adv. Resear. Appl. Math, 3(1), 94-103.
[9] Melliani, S., Elomari, M., Chadli, L. S., \& Ettoussi, R. . Extension of Hukuhara difference in intuitionistic fuzzy set theory, Notes on Intuitionistic Fuzzy Sets, 21(4), 34-47.
[10] Melliani, S., Elomari, M., Ettoussi, R., \& Chadli, L. S. (2015). Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43-53.
[11] Plotnikov, A. V., \& Komleva, T. A. (2012). Averaging of the fuzzy differential equations, J. Uncertain Syst. 6(1), 30-37.
[12] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338-353.

