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1 Introduction

Intuitionistic Fuzzy Graph theory was introduced by A. Shannon and K. Atanassov. In [8] R.
Parvathi and M. G. Karunambigai introduced intuitionistic fuzzy graph as a special case of
Atanassov’s IFG. In [3] M. G. Karunambigai and Palanivel introduce the edge regular
intuitionistic fuzzy graph. In [9] K. Radha and N. Kumaravel introduced the edge degree and the
edge regular properties of truncations of fuzzy graphs. In [6] Akram and Alshehri introduces the
intuitionistic fuzzy cycle intuitionistic fuzzy trees. A. Nagoor Gani and H. Sheik Mujibur Rahman
introduced the lower and upper truncations of intuitionistic fuzzy graphs in [7]. In this paper we
introduce the degree of an edge in truncations of intuitionistic fuzzy graphs and edge regular
properties of truncations of intuitionistic fuzzy graphs.

2  Preliminaries

Let G : (V, E) be an intuitionistic fuzzy graph. Then the degree of a vertex v is defined by (v) =
(du (v),dy (v)), where du(v) = Yuzv Mz (v, u) and d, (V) = Yyzp V2 (v, u).
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Let G : (V,E) be an IFG and let e;; € E be an edge in G. Then the degree of an edge e;; €
E is defined as du(eij) =d,(vy) + du(vj) — 2u, (v, v]-) (or)
du(eij) = Yvwrebk=j 2 (Vi V) + kavjEE,k:ti.uZ (Vi vj)
dv(eij) = dv(vj) + dv(vj) - 2v2(vi, vj)(or)
dy(eij) = Zvwperi= V2(Vi Vi) + Lo erii V2 (Vi v)), and the edge degree of G is defined by
dg (el-j) = (du(eij), dv(el-j)). Let G = (V, E) be an intuitionistic fuzzy graph. If each edge in G
has the same degree (I, [,), then G is said to be an edge regular intuitionistic fuzzy graph.

Let (14, v1) be an intuitionistic fuzzy subset of a set V. The lower and upper truncations of
the intuitionistic fuzzy set (uq,v1) at level t,0 <t <1, are the intuitionistic fuzzy subsets
(41, V1) ) and (u1,v1)® defined respectively by

(1, v (W), if u € py*and u € v;*

(1, v W) = { 0 ,ifuépu(or)ugv®

t Lifu€utandu € vt

(‘ul,\}l)(t)(u) = {(#l,vl)(u), ifuég 'ult(OT') ué Vlt

where ' ={u €V/u;(w) = t}andv,t = {u € V/vy(u) < t}. Take Vipy = (ug,v1)', E =
(2, v2)t. Geoy: (W) V) s an intuitionistic fuzzy graph with underlying crisp graph
G(*t): (Vi) E(t)). This is called the lower truncation of the intuitionistic fuzzy graph G at level t.
Here V(;and E(;) may be proper subsets of V and E, respectively. Now take v =y, E® =E,
then G®: (1, v®) is an intuitionistic fuzzy graph with underlying crisp graph G ®*: (V®, E®),
This is called the upper truncation of the intuitionistic fuzzy graph G at level t.

3 Degree of an edge in truncations of intuitionistic fuzzy graph

3.1 Degree of an edge in lower truncation of intuitionistic fuzzy graph

dG(t) (uv) = (dﬂ(G)(t) (uv), dv(G)(t) (uv))

dﬂ(G)(t) (uv) = Z Mz, (uw) + Z Mz, (wv),Vuv € E
uw €E ), W#v wv eE ), W#u
= ) wmew = Y e+ Y mm) = Y pw),a € By
uw eE,Ww=v uw eE,w#v wv eE,w+u wveE,.w#u
p2 (uw)<t 2 (vw)<t
= duey@) = D )= > p(we), vaw € Egy (1)
uw eE,w#v wveE,wW#u
Uz (uw)<t Uz (vw)<t
dv(G)(t) (uv) = Z Va2 (uw) + Z Vi (wv),Vuv € E,
uw eE ), W#v wv eE (), W#uU
= Z vy (uw) — Z vy (uw) + Z vy,(wv) — Z vo(wv),Vuv € E
uw eE,w=v uw eE,w#v wv eE,w+u wWveE,W#uU
vy (uw)>t vy (vw)>t
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= dy ) (uv) — Z v, (uw) — Z vo(wv),Vuv € E (2)

uw eE,w#v WV eE,wW#u
vy (uw)>t vy (vw)>t

3.2 Degree of an edge in upper truncation of intuitionistic fuzzy graph

de® (W) = (dyiey P W), dy )P (W)

du(,;)(t) (uv) = Z 1y D (uw) + Z D (wv), vuv € E®
uw eE®O w=v wveE®,w=u
= > mw - ) w@m -0+ D mw)
uw eE,w#v uw eE,w#v wveE,w#u
uz (uw)=t
— Z (u,(Wv) —t),Vuv € E®
wv eE,w+u
pz(vw)zt
= duey@) = Y @m == Y (uw)—6),vuw € EO ®3)
uw eE,w+v wv eE,w#u
pz(uw)>t Uz (ww)>t
dye)P () = Z v, ® (uw) + Z v, O (wv),vuv € E®
uw eE® wzv wveE® w£u
= D waw- ) e -0+ Y vw)
uw eE,w#v uw eE,w#v wveE,w#u
v, (uw)st
— Z (vy(wv) — t),Vuv € E®
wv eE,w#u
vy (vw)<t
= dy@) = Y ) -0+ Y (wn) = 6),vuv € EO @)
uw eE,w+v wv eE,w+u
v, (uw)<t v, (vw)<t

Theorem 3.3: Let G : (V, E) be an intuitionistic fuzzy graph such that p, (uv) > t and v, (uv) <
t,Yuv € E, where 0 < t < 1. Then for any uv € E,), dG(t)(uv) = dg(uv)

Proof: From (1), for any uv € E
Auoro @) = duey @) = " W)= ) ()

uw eE,w#v wveE,w+u
pa (uw)<t p2(vw)<t

= dﬂ(G)(t) (uv) = dy ) (uv). From (2), for any uv € E,
duory (@) = dyey @) = > vpw) = D" vy(w)

uw eE,w#v WV eE,wW#u
vy (uw)>t vy (vw)>t

= dV(G)(t) (uv) = dV(G)(uv)

Aoy () = (A, (40D, Ay (1)) = (@) ), dygy (@) = dg ). O
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Theorem 3.4: Let G : (V, E) be an intuitionistic fuzzy graph such that u, (uv) = ¢; and
v,(uv) = c,, V uv € E, where c;and c, are constants. Then for any uv € E®,

dG(t)(uv) — { dg (UU), ifCl <t qnd c, >t
dg(uv) — (c — t)dg-(uv),ifc; 2 tandc, <t

Proof: Let ¢y < t,

Ao @) = duy @) = D" @) == D (up(wr) — )

uw eE,w+v wveE,w+u
Uz (uw)>t uz (vw)>t
= dy@) = Y (@-9- ) (-0
uw eE,w#v wv eE,w#u
C1>t C1>t

= dye) P W) = dygy (). Letc, > t,

dyoyO @) = dyy @) = Y ) - = > ) -1

uw eE,w#v wveE,w+u
vy (uw)<t v, (vw)<t
—dp@) = Y (Q-9- ) (@b
uw eE,w#v wv eE,Ww#u
C2<t C2<t

dv(G)(t) (uv) = d, () (uv), Hence de O (uv) = dg(uv). Similarly, when ¢; > ¢,

Qi@ @) = dyy @) = D" (@) == > (pwr) — 0)

uw eE,w#v wveE,w+u
pa (uw)>t uz(vw)>t
= dupy@) = Y (a-D- ) (-0
uw eE,w+v wv eE,w+u
C1>t C1>t

= dyey(w) — (c; — ) (dg+(w) = 1) — (¢; — ) (dg(v) — 1)
= dyy(wv) — (¢ —t)(dg~(w) + dg-(v) + 2) = dy)(uv) — (¢ — t)dg(uv).
When, ¢, < t,

Aoy W) = dyy @) = D @) == > ) -0

uw eE,w+v wveE,w+u
vy (uw)<t vy (vw)<t
=do@) = Y (-D- ) (u-9
uw eE,w#v wveE,w+u
C2<t C2<t

= dyi)(uw) — (c; —t)(dg=(w) — 1) — (¢ — ) (dg(v) — 1)
= dy i) (wv) — (c; = t)(dg-(w) + dg-(v) — 2) = dy)(wv) — (¢ — t)dg-(uv)
Hence, dG(t) (uv) = dg(uv) — (¢ — t)dg-(uv).

144



4 Edge regular property of truncations
of intuitionistic fuzzy graph

Remark 4.1: Let G : (V,E) is an edge regular intuitionistic fuzzy graph, then G): (L), V(r))
and GO: (u®,v®) need not be edge regular intuitionistic fuzzy graphs. For example in figure
41 G: (uv) is (1.4, 1.2) edge regular intuitionistic fuzzy graph, but Gey: (1), V() and
G®: (u®,v®), t = (.2, .6) are not edge regular intuitionistic fuzzy graphs.

G ®
=(2,.
(6,.1) Gyt =(2,.6) FE =1808)
v, 5. v, v, iy v
(7,.3) (6.1) v, (6,.1) v, a o 2.5
a (7,.3) (.6..1) -
;_7 ( '«4
&) R o Jj"’) o Y =
] S il 2 <
D ~ 2 - ~
g 2 o
vc2.6) (L3 6.4V V;(2,.6) (6. 43V V,(2.6) 1.5 .V
Figure 4.1

Remark 4.2: If Gyy: (), V() and GO: (u®,v®) are edge regular intuitionistic fuzzy graphs,
then G : (u,v) need not be edge regular intuitionistic fuzzy graph. For example in Figure 4.2
Gy: (U Vep)s t= (.5, .3) is (.6, .3) edge regular and GO: (u®,v®), t= (4, .2)is (.8, .4) edge
regular, but Let G : (y, V) is not an edge regular.

G G(t),t = (.5,.3)
v, (.6,.3) v, v, (.6,.3) oV
6,.1) (7,.3)  (6,.1) (7..3)
& (z =
< I <)
[ ] [ ]
V3(7..3) (4,.3)Va V3(7,.3)
GO, t =(4,.2)
(4.1) (4,.2) (4,.2)
4 'V
2
& (&
N N\,
® (4,.2)
V5®(4,.2) V.
Figure 4.2

In the following Theorems, we obtain some conditions under which G and G® are edge
regular.
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Theorem 4.3: Let G : (V, E) be an intuitionistic fuzzy graph such that u, and v, are constant
functions with constant values ¢; and c,. Forevery 0 <t < ¢; &t = ¢3, G(y) is edge regular if
and only if G is edge regular.

Proof: If 0 <t < ¢; &t = ¢, then V) = V, because u; (v) = t,v,(v) < t,Vv € V and

Ew = E, because pi,(e) = t,v,(e) < t,Ve € E. From Theorem 3.3,

dﬂ(G)(e) = du(G)(t)(e) and dV(G)(e) = dV(G)(t)(e),Ve eE

= dg(e) = (dye)(e), dyg)(e)) = (duce), (€) dv(e), (€)) = dg, (€), Ve EE

Hence G is edge regular if and only if Gy, is edge regular. L]

Remark 4.4: If ¢; <t, c; > t, then G is an empty graph.

Theorem 4.5: Let G : (V,E) be an intuitionistic fuzzy graph such that y, and v, are constant
functions. Then G : (u,Vv) is an edge regular intuitionistic fuzzy graph if and only if G® is an
edge regular intuitionistic fuzzy graph, where 0 <t < 1.
Proof: Assume that G : (V,E) is an (m,,m,) — edge regular intuitionistic fuzzy graph. Since
Uz, V, are constant functions, by Theorem (2.9), G*: (V, E) is an edge regular graph. Let G* be
k —edge regular. By Theorem 3.4, Whent > ¢; &t < ¢, d v (uv) = dg(uv) = (my, my),
vuv € E®. Therefore G® is (my, m,) — edge regular. Whent < ¢; &t > ¢,, dyo(uv) =
(my,my) — (¢ — t)k Yuv € E®. Therefore G is ((m;, m,) — (¢ — t)k) — edge regular.

Conversely, assume that G® is an edge regular for every 0 <t < 1. Whent > ¢, &
t < c,, by Theorem 3.4 d;(uv) = dg© (uv), Yuv € E®. = G is also edge regular. Let t <
1 &t=c,.

Then (1, ®,v,®) is a constant function of constant value ¢. Therefore by Theorem (2.9),
G®* is edge regular. Since underlying crisp graphs of G and G® are same, G* is edge regular.
From Theorem 3.4 d; (uv) = d;® (uv) + (¢ — t) dg-(uv)Vuv € E. Hence G is an edge regular
intuitionistic fuzzy graph. ]

Theorem 4.6: Let G : (V, E) be an intuitionistic fuzzy graph on an odd cycle G*. Then G is edge
regular if and only if u, and v, are constant functions.
Proof: LetG be a (ki k,) — edge regular intuitionistic fuzzy graph on an odd cycle
V1Vg, ., UpVq. Let puy(vv,) = 51 and v, (v11,) = S5
Here, d,(v,v3) = (V1) + 1 (V3vs) = kg = 51+ (v3vy) = kg = pp(v3v,) = kg — 54
dy(V2v3) = vo(V113) + v (V30,) = ky = 53 + Vo (V31s) = kg = va(V3vs) =k, — s,
Similarly, pu,(vsve) = s, Uy (V7vg) = ki — 51 and so on, v, (Vsvg) = Sy, Vv, (VoVg) = ky — S,
and so on. Proceeding this way,

s;ifn—1=0(mod 4

H2(vnv1) = {kl Z sj: ifn—1 E(O(mocg 4)

and

s,if n—1=0(mod 4
V2 (Vnv1) = {kz - s}; ifn—1 EE(O(mod) 4)

Case (i): U,(v,v1) = s; and v, (v, V1) = S,. Therefore p,(v,v3) = ky — Sq, U (V4Vs) = 54,
Uz (Vgv;) = ki — 51 and so on. Since n — 1 = 0(mod 4), p;(Vp_1vp) = Sq.

k
d,(vav1) = k = pp(vpv) + (V1) = kg > s1+s1 =ky =51 = 71
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ki k k .
Therefore k; — s; = k; — 71 = 71 Uy (Vv ) = 71 ,Vi=123,..n, where v, = vy.

. k k .
Similarly we get s, = 72 Vo (Vivj41) = 72 ,Vi=123,..n Where v, = v;.

Case (ii): puy(vyv,) = ki, — s; and v,(v,v1) = k, — s5.

Proceeding as above, p,(v,v3) = S, thy (V4vs) = ki — 51, U2 (VgV7) = 51 and so on,

v, (V,13) = 89, V5(V4Vs) = ky — S5, V,(VgV7) = S, and so on.

Sincen — 1 # 0(mod 4), u;(Vn_1v,) = sjand v,(Vy_1v) = Sy

Now proceeding as above, d,(v,v1) = ki = pp(Vp_1vn) + pp(v1v) = kg = 51 +51 = kg
=5 = % Uy, (Vv ) = %,Vi = 1,2, ...n, where v,,; = v;. Similarly we get s, = %,

ky o, . .
v,(Vivi4q) = ?Z,Vl =1,2,...n, where v,,; =v;. Hence in the both cases, i, and v, are

constant functions. Conversely, assume that u, and v, are constant functions with constant
values c; and c, respectively. Then d, (v;v;41) = 2¢; and d,(v;v;41) = 2c; . Therefore G is a
(2¢4,2c,) — edge regular. L]

Theorem 4.7: Let G : (V, E) be an intuitionistic fuzzy graph on an even cycle G* with n vertices
and let n # 0(mod 4). Then G is an edge regular intuitionistic fuzzy graph if and only if y, and
v, are constant functions.

Proof: Let G be an intuitionistic fuzzy graph on an even cycle v,v,, ..., V,v;, Where n %
0(mod 4). If u, & v, are constant functions with constant values c; and c, respectively.
de(vivip1) = (d,(Vivig1), dy(Vivig1)) = (2cq, 2¢3).

Therefore G is a (2¢4, 2¢;) — edge regular intuitionistic fuzzy graph.

Conversely, let G is a (kq, k;) — edge regular intuitionistic fuzzy graph. Since n is even
and n # 0(mod 4), we have n — 2 = 0(mod 4). Therefore the number of edges that lie
alternatively from v, v, is g — 1 (an even number).Let u,(v,v,) = s; and v,(v,v,) = s,. Then
proceeding as above p,(v3vy) =k —s; and v,(v3v,) =k, — Sy, Uy (Vsve) =s; and
Vo(VsV6) = Sz »evves tho(Vn_3Vn_3) = ky — 51 and vy (Vn_3Vn_2) = ky — Sz, Ho(Vn_1Vn) = 54
and v, (v,_1 1) = Ss.

d,(Vav1) = Uy (Vpo1 V) + (V1 V3) = kg & 51+ 51 =ky > 5, = %

Ki cn k k
Therefore k; — s, = 71 , Similarly s, = 72 and k, — s, = 72 :

k
Po(V1V3) = pp(V3vy) = =+ = U (V1 V) = ?1 , Va(0113) = v (W3vy) = - = v (Vo qvy) =

%. Similarly if u,(v,v3) = r; and v,(v,v3) = r, then proceeding as above, u,(v,v,) = r; and

k k
Vo(Upvy) =13.d,(v1v;) = kg and d,(vivy) =k, =1 = fand r, = 72

Therefore u, and v, are constant functions. ]

Theorem 4.8: Let G : (V, E) be an intuitionistic fuzzy graph on an even cycle G* with n vertices
and let n = 0(mod 4). Then G is a (kq, k,) — edge regular intuitionistic fuzzy graph if and only
if u, and v, assumes exactly eight values 1;,s;,t; and [;,i = 1,2 such that consecutive adjacent
edges receives these values in cyclic order withr; +t; = k;and s; + [; = k;,i = 1,2.
Proof: Let G be a (kq,k,) —edge regular intuitionistic fuzzy graph on an even cycle
V1Vy, ..., Up V1, Where n = 0(mod 4). Let u,(v,v,) = riand vy (v,v,) = 15.

Sincen = 0(mod 4), n — 2 isan even and n — 2 Z 0(mod 4).
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= % — 1is an odd number. Therefore the number of edges that lie alternatively from v, v, is
%— 1 (an odd number). Now p,(v,v,) = 1y and u,(v,v3) = ky = uy,(v3v,) = ki — 14
Similarly, p,(Vsvg) = 11, oo, hy(Vp_1vy) = kg — 11 If p,(v,v3) = 54, then proceeding as
above py (Vv5) = ky — 51, U (VeV7) = S, -y ta(Vnvy) = ky — 55

Thus the consecutive adjacent edges of the cycle receives the four membership values
11,51, k1 —riand k; — sqin cyclic order. Similarly the consecutive adjacent edges of the cycle
receives the four non membership values 15, 55, k, — r,and k, — s, in cyclic order. Conversely,
assume that y, and v, exactly takes eight values respectively as 1;, s;, t; and [;, i = 1,2 such that
consecutive adjacent edges receives these values in cyclic order with r; +t; = k; and s; + [; =
ki,i=12. d(e)=(r+t,r,+1t;) or)(s;+ 1,5, +1,) = (ky,ky)(or)(ky, ky) = d(e) =
(ki, k) Ve €E.

Therefore G is a (kq, k;) — edge regular intuitionistic fuzzy graph. L]

Theorem 4.9: Let G : (V, E) be an intuitionistic fuzzy graph on a cycle G* withn # 0(mod 4),
where |V| = n. Then G : (u, V) is an edge regular intuitionistic fuzzy graph if and only if G® is
an edge regular intuitionistic fuzzy graph, where 0 <t < 1.

Proof: Given G is an intuitionistic fuzzy graph on a cycle G* withn Z 0(mod 4). Then by
Theorem 4.6 and 4.7, we have u, and v, are constant functions then G is an edge regular

intuitionistic fuzzy graph if and only if G® is an edge regular intuitionistic fuzzy graph, where
0<t< 1. [

Definition 4.10: The adjacency sequence of a vertex v in an intuitionistic fuzzy graph G is
defined as a sequence of both membership and non membership values of edges incident at v
arranged in increasing order. It is denoted by as(v).

Definition 4.11: The adjacency sequence of an edge e in an intuitionistic fuzzy graph G is defined
as a sequence of both membership and non membership values of edges adjacent to e arranged
in increasing order. It is denoted by as(e).

Theorem 4.12: If all the edges of G have the same adjacency sequence, then all the edges of
G(t) have the same adjacency sequence.

Proof: Suppose that all the edges of G have the same adjacency sequence, say (kq, ky, ..., k;,) in
membership and (sS4, Sy, ..., S, )in non membership. If t > k,, and t < s,,, then there is no edge in
Ge. If t < kq andt > s4, then adjacency sequence of e is (kq, ky, ..., ky,) in membership and
(S1, 52, -, Sp)in non membership for each e € Ey).

Ifk;_4 <t<k;ands;_; >t = s;, then the adjacency sequence of e is (k;, ki 1, .-, k)

in membership and (s;, S;41, ..., Sp) in non-membership for each e € E(. ]

Remark 4.13: Converse of Theorem 4.13 need not be true. For example all the edges in
G, t = (.5,.3) have the same adjacency sequence ((.6, .2), (.7, .3)). Butin G,

as(p) = ((-4,.1),(.6,.2),(.7,.3)) #((.6,.2),(.6,.2),(.7,.3),(.7,.3)) = as(t)
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G(t)' t = (5, . 3)

G
a p(7..3) b
({J&_ - Lz g (8,.2)
£ < o
= - =
A% 3 7(6,.2) 7..3F 463 ri6. ) 7,.3"

Figure 4.3

Theorem 4.14: If all the edges of G have the same adjacency sequence, then all the edges of
G ® have the same adjacency sequence.

Proof: Suppose that all the edges of G have the same adjacency sequence, say (k4, ko, ..., k) and
(51,82, .-, Sp)in membership and non membership respectively in G. If t > k,, and t < s,,, then
(kq, ko, ..., ky) and (s4, S5, ..., Sp) are adjacency sequence in membership and non membership
foreache € E® Ift < k, and t > sy, then (¢, t, ..., t) and (¢, ¢, ..., t) are adjacency sequence in

membership and non membership for each e € E®.
If k1 <t<k; ands;_; >t =s;, then the adjacency sequence in membership and

non-membership is (kq,ky, ..., k;i_q,t,¢, ..., t) and  (Sq,Sy, ..., Si—1, £, ¢, ..., t) respectively,
Ve € E®, O
Remark 4.15: Converse of Theorem 4.15 need not be true. For example all the edges in G©, ¢t =

(.4,.2) have the same adjacency sequence ((.2, .1), (.4, .2), (.4, .2)). Butin G,
as(p) = ((.2,.1),(.5,.2),(.7,.3)) = ((.2,.1),(.6,.25),(.7,.3)) = as(q)

GOt = (0.4,0.2)

d(,9, <15 r(.6,.25) (.7,.5)':

Figure 4.4

Theorem 4.16: If all the edges of G have the same adjacency sequence, then G(;) and G® are

edge regular intuitionistic fuzzy graphs.
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Proof: When all the edges of G have the same adjacency sequence, the same holds for G and

G® also. Since the sum of all the elements of the adjacency sequence of an edge is its degree

dg(e) = (dy(e), dy(e)), Ge) and G® are edge regular intuitionistic fuzzy graphs. 1
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