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1 Introduction

The Petri nets, and their extensions and modifications were extended with the
concept of Generalized Nets (GNs) in 1982 [7, 9, 10, 12]. The standard GNs
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are not simply an automatic aggregation of the components of the other types
of nets. Some new components have been added to their description so that
all other extensions and modifications of the Petri nets can be described by
standard GNs.

The first major difference with the other types of Petri nets is the “history”
that every token accumulates as a result of the characteristics gained during
each transfer from an input to an output place of a transition. The “place-
transition” relation is the second major difference. Transitions, as objects with
a complicated nature, contain m input and n output places, m,n ≥ 1. The
transitions’ conditions for transfer between these input and output places, as
well as the capacities of the transitions’ arcs are described by Index Matrices
(IMs) [8, 11]. This is the third major difference. The fourth major difference
is related to the time during which the GN functions. A global time scale
is associated with the GN. This time scale depends on the particular process
described by the GN. All events in the GN evolve over this time scale. In the
definition of the standard GN time is discrete and it increases with discrete
steps.

Since 1982, the concept of the GNs itself has been extended numerous
times. Each extension is defined with the primary purpose providing a means
for describing a certain class of processes, or to facilitate an already existing
one. The studies on the early defined extensions of the standard GNs, like In-
tuitionistic Fuzzy GNs of type 1, 2, 3 and 4, Colour GNs, GNs with interval
activation time, GNs with complex structure, GNs with global memory, GNs
with stop conditions, GNs with tokens’ duration of “life”, and many others,
are summarized in [9, 10, 12]. The more recently defined extensions are GNs
with volumetric tokens [14], GNs with characteristics of the places [4, 2], In-
tuitionistic fuzzy generalized nets with characteristics of the places of types 1
and 3 [1], GNs with time dependent priorities [5], GNs with dynamic priori-
ties [6], GNs with characteristics of the arcs [3], Interval valued intuitionistic
fuzzy GNs [13] and GNs with additional intuitionistic fuzzy conditions for to-
kens transfer [15]. All of these extensions are conservative extensions of the
standard GNs.

The new extension presented here differs from the other extensions in the
splitting of the tokens during their transfer. The number for splitting of a token
is referred to here not as the number of identical copies of the token generated
during a single transfer, but as the number of transfers during which the token
could be split.
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In the case of standard GNs and their other extensions, if a token is al-
lowed to split, it splits into as many identical tokens as the number of the
corresponding predicates evaluated as true. This happens during each transfer
of the token. The number of splitting of a token is then in some sense “unlim-
ited”. A token is allowed to split an unlimited number of times provided that
the GN is still functioning and there are more than one predicates evaluated as
true during the transfer.

In the case of the new extension presented here, the number for splitting of
a certain token is limited by an upper bound. The number of times each token
is allowed to split is determined by a specific function. This new function is
added here to the standard definition of GNs.

The paper is organized as follows. The formal definitions concerning the
new extension and the general algorithm for the transition’s functioning are
presented in Section 2. Section 3 contains the proof that the new extension is a
conservative extension of the class of standard GNs. The concluding remarks
are in Section 4.

2 Generalized Nets with Limited Number of Token
Splitting Allowed

The standard GNs and all their modifications, similarly to the other types of
Petri nets, contain transitions, places and tokens. In general, a GN-place is

represented as the symbol
n

, while the graphical structure of a transition

is represented as the symbol

AA��

, which indicates the transition’s conditions.
There is one arc entering and one arc exiting each place. The GN’s input

places are the places without entering arcs. The places with no exiting arcs
are the GN’s output places. Transition’s input places are those places which
are to the left of a transition, while those to the right of a transition are the
transition’s output places.

Each transition has at least one input and one output place. When tokens
enter the input places of a transition, it becomes potentially fired (activated).
The tokens are transferred from input to output places of a transition under
certain conditions. A transition is fired right at the moment of this transfer.

Each token enters the net with an initial characteristic. Consequently,
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the token receives new characteristics with each transfer. This is an essential
difference from the other types of nets, the memory of the GNs.
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Figure 1. A
GNLNSA-transition.

The new extension presented here, namely Gen-
eralized Nets with Limited Number of Token Splitting
Allowed (GNLNSA), is no exception to these gen-
eral considerations.

Definition 1. Every GNLNSA-transition is given by
a seven-tuple (see Figure 1):

Z = 〈L′,L′′, t1, t2,r,M, 〉,

where

(a) L′ and L′′ are finite, non-empty set of the tran-
sition’s input and output places, respectively.

L′ = {l′1, ..., l′i , ..., l′m},

L′′ = {l′′1 , ..., l′′j , ..., l′′n};

(b) t1 is the current time-moment of the transi-
tion’s firing;

(c) t2 is the current value of the duration of its ac-
tive state;

(d) r is an IM with the transition’s conditions for
transfer of certain tokens from the transition’s
input places to corresponding outputs. The IM
r has the form:

r =

l′′1 . . . l′′j . . . l′′n
l′1
... ri, j

l′i (ri, j − predicates)
... (1≤ i≤ m,1≤ j ≤ n)

l′m
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where the element ri, j is a predicate which eval-
uation determines the possibility of transfer-
ring a token from the i-th input to the j-th out-
put place. This transfer is only possible when
the ri, j truth value is true;

(e) M is an IM of the capacities of the transition’s arcs:

M =

l′′1 . . . l′′j . . . l′′n
l′1
... mi, j

l′i (mi, j ∈N ,
... 1≤ i≤ m,1≤ j ≤ n)

l′m

,

where N = {0,1,2, . . .}∪{∞};

(f) is the transition’s type. It has the form of a Boolean expression
with the identifiers of the transition’s input places as variables, and the
Boolean operations ∧ and ∨. This formula has the following semantics:

∧(li1 , li2 , . . . , liu) — there has to be at least one token in each of the places
li1 , li2 , . . . , liu ,
∨(li1 , li2 , . . . , liu) — there has to be at least one token in one of all places
li1 , li2 , . . . , liu ,
where {li1 , li2 , . . . , liu} ⊂ L′;

The transition can become active only when the value of the transition’s
type, evaluated as a Boolean expression, is true.

Definition 2. The ordered four-tuple

E = 〈〈A,πA,πL,c, f ,θ1,θ2〉,〈K,πK ,θK ,σK,T 〉,〈T, to, t∗〉,〈X ,Φ,b〉〉

is called a Generalized Net with Limited Number of Token Splitting Allowed
(GNLNSA), if:

(a) A is a set of transitions, defined according to Definition 1;
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(b) πA is a function which gives the priorities of the transitions, i. e., πA :
A→N ;

(c) πL is a function which gives the priorities of the places, i.e., πL : L→N ,
where

L = pr1A∪ pr2A ,

i.e., L is the set of all GN-places, and pri{x1,x2, ...,xn} = xi, where n ∈
N , n≥ 1 and 1≤ i ≤ n;

(d) c is a function which gives the capacities of the places, i.e., c : L→ N ;

(e) f is a function which evaluates the truth values of the predicates of the
transition’s conditions;

(f) θ1 is a function which gives the next moment of time when a transition
can be activated, i.e., θ1(t) = t ′, where t = pr3Z, and t, t ′ ∈ [T,T + t∗]
and t ≤ t ′. The value of this function is calculated when the transition
terminates its active state;

(g) θ2 is a function which gives the duration of the active state of a transition,
i.e., θ2(t) = t ′, where t = pr4Z, t ∈ [T,T + t∗] and t ′ ≥ 0. The value of
this function is calculated at the moment of the transition’s activation;

(h) K is the set of the GN’s tokens;

(i) πK is a function which gives the priorities of the tokens, i.e., πK : K →
N ;

(j) θK is a function which gives the moment of time when a certain token
can enter the net, i.e., θK(α) = t, where α ∈ K and t ∈ [T,T + t∗];

(k) σK,T is the modification which marks the difference between the stan-
dard GNs, the rest of their extensions, and the one proposed here. σK,T

is a function which gives the number of times a certain token is allowed
to split in a particular moment of time during the functioning of the GN,
σK,T : K× [T,T + t∗]→ N .

(l) T is the moment of time when the GN starts functioning. This moment
is determined with respect to a fixed (global) time-scale;

(m) to is an elementary time-step related to the fixed (global) time-scale;
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(n) t∗ is the duration of the GN functioning;

(o) X is the function which assigns initial characteristics to each of the to-
kens when they enter the GN;

(p) Φ is a characteristic function which gives a new characteristic to each
token upon its transfer from an input to an output place of a certain
transition;

(q) b is a function which gives the maximum number of characteristics a
certain token can receive, i.e., b : K→N .

The general algorithm for transition’s functioning, described in [9, 10, 12],
is modified here to take into consideration the number of times a given token
and its derivatives are allowed to split during the GN functioning. Initially this
value is assigned by the function σK,T to each token upon entering the GN.

Apart from the splitting of tokens, the algorithm for tokens transfer after
the moment of time t1 = T IME (the current GN moment of time), denoted by
algorithm A, takes into consideration also the possibility of merging tokens.

The list of tokens which can be merged with a given token α have to be
specified in the initial characteristics of this α token. For example, the expres-
sion

xα
0 = “〈{β1, ...,βk},xα,∗

0 〉”,
denotes that the α token can be merged with the tokens in the set {β1, ...,βk}.
The rest of the information of the token’s initial characteristics is stored in xα,∗

0 .

The algorithm A can be described in 12 steps, as follows:

A01 Sort the input and output places of the transitions by their priorities.

A02 Form two lists of tokens in each input place l. The first list contains
those of the tokens that might be transferred to a certain output place
during the current time moment. Sort these tokens by their priorities.
The second list is empty at first. The two lists shall be denoted with P1
and P2, respectively.

A03 Generate an empty index matrix R that corresponds to the index ma-
trix of the predicates r. The values in the matrix R can only be 0 or 1,
which correspond to predicate evaluations f alse and true. Assign 0 to
all elements Ri, j of R which:
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• are in a row that corresponds to an empty input place, i.e., there
are no tokens in the input place that can be transferred to an output
place of the current transition;

• are placed in the position (i, j) for which the predicate ri, j is set as
false or mi, j = 0, i.e. the current capacity of the arc between the ith

input place and the jth output place is 0.

Proceed with step A04.

A04 Iterate through the input places in the order set by their priorities, starting
with the place with highest priority for which no token has been trans-
ferred during the current time-step and which has at least one token in it.
The token α which might be transferred on the current time-step is the
one with the highest priority in the P1 list of the current input place. Per-
form the following steps in order to determine if and where to transfer
the current token.

A04a Find the next Ri, j value on the relevant row of the IM R which has
not been checked on the current time-step. If such a value exists,
go to step A04b. If all the values on the relevant row of the IM R
have been checked, go to step A04g.

A04b Check if the relevant output place, which the token α might be
transferred to, is full. If so, go to step A04c, otherwise go to step
A04d.

A04c Check if the relevant output place has a token (or tokens) that
can be merged with the one being transferred. If so, go to step
A04d. Otherwise, set Ri, j value to 0 and go to step A04a to check
the next element of R on the relevant row.

A04d Evaluate the truth value of the corresponding predicate ri, j of the
index matrix r. If ri, j is true, set the Ri, j value of R to 1 and go to
step A04e. Otherwise set the Ri, j value to 0 and go to step A04a.

A04e Check if the current token can still split. This is possible, if the
value of the function σK,T for the token α in the moment of the
transition activation T IME is not 0.
If σK,T (α,T IME) 6= 0, go to step A04a to check the rest of the
elements of R on the relevant row. If the token cannot split, go to
A04f.
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A04f The token α is transferred to the corresponding output place and is
merged with specified tokens in the new host, if there are such. The
number of times the tokens, merged with the token α , are allowed
to split does not change, since σK,T (α,T IME) = 0.
Evaluate the characteristic function of this output place and assign
this value as a new characteristic of the transferred token upon en-
tering the output places.
Proceed with step A05.
The evaluation of the predicates stops with the first one evaluated
as true. The token is moved then to the highest priority output
place amongst those, the token can be transferred to.

A04g If all the values on the relevant row are 0, go to step A05.
If there is more than one Ri, j value set to 1, the token α splits in as
many new tokens as the number of the Ri, j values set to 1. These
newly generated tokens are identical to the original token α in any
other way except for one. The number of times each of the newly
generated tokens is allowed to split is set to σK,T (α,T IME− to)−
1. These tokens are transferred to the corresponding output places
and are merged with specified tokens in the new hosts, if there are
such.
In case the token αi, generated by the splitting of the original token
α , is merged with the tokens {β1, ...,βk} in the new host, the num-
ber of times each of the resulting tokens is allowed to split is set to
max(σK,T (αi,T IME),σK,T (β j,T IME)), where β j ∈ {β1, ...,βk}.
If there is exactly one Ri, j value set to 1, the token that is trans-
ferred to the corresponding output place is the original token α .
No splitting is performed in this case. The number of times the
token α is allowed to split does not change.
In case the token α is merged with the tokens {β1, ...,βk} in the
new host, the number of times each of the resulting tokens is al-
lowed to split is set to max(σK,T (α,T IME),σK,T (β j,T IME)), where
β j ∈ {β1, ...,βk}.
Evaluate the characteristic function of these output places. Assign
these values as new characteristics to the corresponding transferred
tokens upon entering the output places.
Proceed with step A05.

85



A05 If the highest priority token cannot be transferred during the current time
step, move the token to the P2 list of the input place.

A06 Increase by 1 the current number of tokens in each output place to which
a token has been transferred if the token has not been merged with any
of the other tokens in the host. Do not change the current number of
tokens in the output place otherwise.

A07 Decrease by 1 the current number of tokens in each input place from
which a token has been transferred. If the current number of tokens in
such an input place becomes 0, set to 0 all the elements in the corre-
sponding row of the index matrix R.

A08 Decrease by 1 the capacities of all the arc through which a token has
been transferred. If the current capacity of an arc becomes 0, assign 0 to
this element of the index matrix R that corresponds to the arc.

A09 If there are more input places with lower priority from which no token
has been transferred to an output place, go to step A04. Otherwise, go
to step A10.

A10 Add t0 to the current model time.

A11 If the value of the current time is less than or equals t1 + t2 (the time
components of the considered transition), go to A04. Otherwise, go to
step A12.

A12 End of the transition’s functioning.

The general algorithm for the GN’s functioning is the same as the one of a
standard GN.

3 GNLNSAs are conservative extension of the standard
GNs

Let Σ be the class of the standard GNs and ΣLNSA be the class of the GNLNSAs.
Every standard GN is a GNLNSA, i.e. the relation

Σ ` ΣLNSA
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holds.
Every standard GN can be seen as a GNLNSA in which

σK,T (α, t) = ∞,∀α ∈ K,∀t ∈ [T,T + t∗],

if the tokens are allowed to split. If the tokens are not allowed to split,

σK,T (α, t) = 0,∀α ∈ K,∀t ∈ [T,T + t∗].

Therefore, GNLNSAs are extensions of the standard GNs.
In addition, every GNLNSA can be represented as a standard GN.

Theorem 1: The class ΣLNSA is a conservative extension of the class Σ, i.e.

ΣLNSA ≡ Σ.

Proof.

It is sufficient to show that the functioning and the results of the work of
every GNLNSA can be described by some ordinary GN.

Let the GNLNSA

E = 〈〈A,πA,πL,c, f ,θ1,θ2〉,〈K,πK ,θK ,σK,T 〉,〈T, to, t∗〉,〈X ,Φ,b〉〉

be given.
Let G be a standard GN with the following definition:

G = 〈〈A,πA,πL,c, f ,θ1,θ2〉,〈K,πK ,θK〉,〈T, to, t∗〉,〈XG,ΦG,b〉〉,

where

XG = X ∪{xα
0 | α ∈ K,xα

0 = σK,T (α,θK(α)),xα
0 ∈N },

Φ
G = Φ∪{n | n = σK,T (α, t),α ∈ K, t ∈ [T,T + t∗],n ∈N }.

The standard GN G has the same static components and graphical structure
as the GNLNSA E. The time components, the capacities of the arcs, places
and transitions, the priorities, even the tokens are identical in both of the nets.
The only two components that differ them are the function X , which gives
the initial characteristics of the tokens, and the function Φ, which assigns new
characteristics to each token upon its transfer.
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In the case of the standard GN G, the function XG assigns to each token
the same initial characteristics as the function X in the net E, but in addition
the functions XG sets the initial number of times each of the tokens can split.
These values are calculated at the moment the tokens enter the GN G. Apart
from the new characteristics assigned to each token by the function Φ in E, the
characteristic function ΦG adds as a new characteristic the number of times
each token is allowed to split at the current moment of time t, t ∈ [T,T + t∗].

Now, do the GNs G and E function in the same way? Are the results of
their work equal?

The functioning and the results of the work of a transition ZG in G will
be compared to the functioning and respectively the results of the work of its
corresponding transition ZE in E.

Let ZE = 〈L′,L′′, t1, t2,r,M, 〉 is a transition in the GNLNSA E.
The corresponding transition in the standard GN G is defined in the fol-

lowing way:
ZG = 〈L′,L′′, t1, t2,rG,M, 〉.

These two transitions become active at the same moment of time and have
equal duration of the functioning. The sets of input and output places are also
equal. The priorities and the capacities of the corresponding places are equal,
as well as the capacities of the arcs.

The transition’s conditions in rG, however, have to be constructed in a way
which guarantees that a token αG will have an identical behaviour with the
corresponding token αE in ZE . For this purpose, the predicate rG

i, j has the
following form:

rG
i, j = ri, j ∧ (σK,T (α

G,T IME) 6= 0∨¬rG
i,k,∀k < j).

The initial number of times each token in G is allowed to split is set as an
initial characteristic by the function XG.

If ri, j = f alse, then rG
i, j will be evaluated as f alse. If ri, j = true, then rG

i, j
will have the same truth value as the second argument of the conjunction.

If the number of times the token αG is allowed to split at the moment of
the transition activation is not 0, i.e., σK,T (α

G,T IME) 6= 0, the rG
i, j is evaluated

as true. The token αG will then split in as many identical tokens as the number
of the predicates rG

i, j evaluated as true, which is exactly the number of the
predicates ri, j evaluated as true.

In the case of σK,T (α
G,T IME) = 0, the token αG is not allowed to split

any more. The token then has to be transferred to the first output place l j for
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which the corresponding predicate rG
i, j is evaluated as true. In the standard

GNs, the tokens are split each time there is more than one predicate evaluated
as true in the transition’s conditions. Therefore, there should be no more than
one predicate, evaluated as true, in the corresponding row of the IM rG. Since
the output places are processed sequentially, this means that there should be no
predicates evaluated as true before the currently evaluated one, or rG

i,k should
be f alse,∀k < j.

The so defined predicates in G guarantee that the tokens will be transferred
to the output places which correspond to the output places determined by the
predicates in E. When a token αG is transferred to an output place, it receives a
new characteristic, assigned by the function ΦG. Apart from the characteristics
which the corresponding token in E receives when it is transferred, the token
αG in G also receives the number of times it is allowed to split. The maximum
number of characteristics each of the tokens can have is equal in both of the
nets.

Therefore, the corresponding tokens behave in the same way. Since they
are chosen randomly, it can be concluded that the same assertion can be made
for any other pair of corresponding tokens of the nets. This leads to the
point that the two corresponding transitions ZG and Z have identical behaviour.
Hence, the GN G can describe the functioning and the work of the GNLNSA
E.

4 Conclusion

A new conservative extension of the concept of standard GNs, namely Gen-
eralized Net with Limited Number of Token Splitting Allowed, has been pre-
sented here together with its specific algorithm for the functioning of the tran-
sitions.

The possibilities for the application of GNLNSAs are topics for further
research. An operator to be applied to a token during the functioning of the
net, in order to change the number of times this token is allowed to split, will
be defined as the next step in the development of this new class of GNs.

It will be interesting to study combinations of the new GN-extension with
other GN-extensions, e.g., Generalized Nets with Volumetric Tokens (GNVT)
[14], Generalized Nets with Characteristics of the Places (GNCP) [4], Gener-
alized Nets with Characteristics of the Arcs (GNCA) [3], Intuitionistic Fuzzy
Generalized Nets with Characteristics of the Places of Types 1 (IFGNCP1) and
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3 (IFGNCP3) [1], etc.
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