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Abstract: In this paper, we present a derivative-free Newton’s method that avoids computing 

the derivative by generating an approximation of the derivative for the intuitionistic fuzzy 

nonlinear equation. We first consider transforming the intuitionistic fuzzy quantities into their 

equivalent membership and non-membership parametric forms and insert the approximation 

from the forward difference method applied to 𝐹′(𝑥𝑘) = 0 in Newton’s method to avoid 

computing the Jacobian matrix. Numerical experiments were carried out, which shows that the 

approach is a good option for computing Jacobian and is an efficient one. 

Keywords: Derivative-free, Intuitionistic fuzzy nonlinear equation, Parametric form, Zadeh’s 
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1 Introduction 

Many real-life problems can be transformed into a system of nonlinear equations and require the 

numerical solution of the form  
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 𝐹(𝑥) = 0 (1) 

where 𝐹: 𝑅𝑛 → 𝑅𝑛 and that it is required to find 𝑥∗ ∈ 𝑅𝑛 such that 𝐹(𝑥∗) = 0. When the 

coefficients of (1) are written in crisp numbers, it may be convenient to represent some or all of 

them with fuzzy numbers, that is, a fuzzy set containing a degree of membership to a given crisp 

number, or with intuitionistic fuzzy numbers, that is an extension of fuzzy numbers that includes 

a degree of non-membership. Zadeh [22–24] introduced and investigated the idea of fuzzy 

numbers and the arithmetic operations involving these numbers. In 1983, Atanassov [3–5] 

introduced the intuitionistic fuzzy sets as an extension of Zadeh’s fuzzy sets that contain the 

degree of non-membership explicitly together with the degree of membership to the set. The idea 

of fuzzy numbers and the arithmetic operations involving these numbers also applies to 

intuitionistic fuzzy sets. Among the widely used application of fuzzy number arithmetic is the 

nonlinear equation whose parametric forms are fully or partially represented by fuzzy numbers 

[9, 10, 12, 13, 15–17, 19–21]. The numerical solution to the intuitionistic fuzzy nonlinear 

equation with intuitionistic fuzzy coefficient involving fuzzy variable is one when the Jacobian 

is a nonsingular near-exact root (𝑥∗). In particular, Amma et al. [2] considered the numerical 

solution of intuitionistic fuzzy differential equations by Euler and Taylor methods. Biswas et al. 

[6] solved fuzzy differential equations with a linear differential operator using the Adomian 

decomposition method, and Ettoussi et al. [11] worked on the solution of intuitionistic fuzzy 

differential equations by successive approximation method. However, in the literature, little has 

been done on intuitionistic fuzzy nonlinear equations among which is that of Keyanpour and 

Akbarian [14] that considered the mid-point of Newton’s method for solving the intuitionistic 

fuzzy nonlinear equation. 

Nevertheless, in an attempt to overcome some of the disadvantages of Newton’s method, it 

has been suggested that the Jacobian matrix be evaluated either once for all iterations or once for 

every few iterations, instead of at every iteration as is strictly required [8]. In this paper, we 

consider the forward difference approach applied to Newton’s method that does not compute the 

Jacobian for solving systems of intuitionistic fuzzy nonlinear equations because in [16] it was 

shown that the forward difference method is more efficient in numerical computation. Newton’s 

method is an iterative method whose iterative function is generated either by computing the 

Jacobian or by a derivative approximation. We introduce the finite difference approach to the 

method that avoids computing the derivative of the function 𝑓. This is made possible by inserting 

the approximate 𝑔(𝑥) of 𝐹′(𝑥) in Newton’s method. The anticipation has been to reduce the 

computational burden of computing the Jacobian matrix at each iteration. 

This paper is arranged as follows: in the next section, we present some basic definitions and 

a brief overview of intuitionistic fuzzy nonlinear equations. We present the description of our 

method in Section 3. The next Section 4 contains the alternative approach for solving an 

intuitionistic fuzzy nonlinear equation. And finally, we report our numerical results in Section 5, 

and the conclusion is given in Section 6. 

2 Preliminaries 

We present the following definitions of fuzzy numbers and intuitionistic fuzzy numbers. 
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Definition 1. [24] A fuzzy set 𝐴 of the real line 𝑅 with a membership function 𝜇𝐴: 𝑅 → [0,1] is 

called a fuzzy number if: 

a) 𝐴 is normal, i.e., there exists an element 𝑥0 such that 𝜇𝐴(𝑥0) = 1; 

b) 𝐴 is fuzzy convex for the membership function 𝜇𝐴(𝑥), i.e., ∀ 𝑥1, 𝑥2 ∈ 𝑅, ∀𝜆 ∈ [0,1], 

𝜇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ min(𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2)); 

c) 𝜇𝐴 is upper semi continuous; 

d) supp(𝐴) is bounded. 
  

Definition 2. [5] An IFS 𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)〉|𝑥 ∈ 𝑅}, of the real line is called an intuitionistic 

fuzzy number (IFN) if: 

a) 𝐴 is IF-normal, i.e., there exist at least two points 𝑥0, 𝑥1 ∈ 𝑋 such that 𝜇𝐴(𝑥0) = 1 and 

𝜈𝐴(𝑥1) = 1; 

b) 𝐴 is IF-convex, i.e., its membership function 𝜇 is fuzzy convex and its non-membership 

function 𝜈 is fuzzy concave; 

c) 𝜇𝐴 is upper semicontinuous and 𝜈𝐴 is lower semicontinuous; 

d) supp(𝐴) = {𝑥 ∈ 𝑋 | 𝜈𝐴(𝑥) < 1} is bounded. 

Definition 3. [5] An intuitionistic fuzzy set (IFS) 𝐴 in 𝐸 is defined as an object of the following 

form 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)〉|𝑥 ∈ 𝐸}, 

where the functions 𝜇𝐴: 𝐸 → [0,1] and 𝜈𝐴: 𝐸 → [0,1] define the degree of membership and the 

degree of non-membership of the element 𝑥 ∈ 𝐸, respectively, and for every 𝑥 ∈ 𝐸: 

0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1. 
 

Definition 4. [14] An intuitionistic fuzzy number (IFN) 𝑛 in parametric form is a pair 𝑛 =

 ([𝑛̲, 𝑛̅], [𝑛̳, 𝑛̿]) of function 𝑛̲, 𝑛̅, 𝑛̳, 𝑛̿, that satisfies the following requirements: 

1. 𝑛̲(𝛼) is a bounded monotonic increasing left continuous function; 

2. 𝑛̅(𝛼) is a bounded monotonic decreasing left continuous function; 

3. 𝑛̳(𝛼) is a bounded monotonic increasing left continuous function; 

4. 𝑛̿(𝛼) is a bounded monotonic decreasing left continuous function; 

5. 𝑛̲(𝛼) ≤ 𝑛̅(𝛼), 𝑛̳(𝛼) ≤ 𝑛̿(𝛼), 0 ≤ 𝛼 ≤ 1. 

 

Definition 5. [11] A triangular intuitionistic fuzzy number (TIFN) 〈𝑢, 𝑣〉 is an intuitionistic fuzzy 

set in 𝑅 with the following membership function 𝑢 and non-membership function 𝑣: 

𝑢(𝑥) = {

𝑥−𝑎1

𝑎2−𝑎1
,     𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎3−𝑥

𝑎3−𝑎2
,     𝑎2 ≤ 𝑥 ≤ 𝑎3

         0,        otherwise

    and    𝑣(𝑥) =

{
 

 
𝑎2 −𝑥

𝑎2−𝑎1
1 ,     𝑎1

′ ≤ 𝑥 ≤ 𝑎2
𝑥−𝑎2 

𝑎3
1−𝑎2 

,     𝑎2 ≤ 𝑥 ≤ 𝑎3
′

     1,        otherwise

 , 

where 𝑎1
′ ≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎3

′  and ∀𝑥 ∈ 𝑅, 𝑢(𝑥), 𝑣(𝑥) ≤ 0.5 for 𝑢(𝑥) = 𝑣(𝑥). 

This TIFN is denoted by 〈𝑢, 𝑣〉 = 〈𝑎1, 𝑎2, 𝑎3; 𝑎1
′ , 𝑎2, 𝑎3

′ 〉 where the parametric form is given as 

𝑢̲(𝛼) = 𝑎1 + 𝛼(𝑎2 − 𝑎1),          𝑢̅(𝛼) = 𝑎3 − 𝛼(𝑎3 − 𝑎2), 

𝑣̳(𝛼) = 𝑎1
′ + 𝛼(𝑎2 − 𝑎1

′ ),          𝑣̿(𝛼) = 𝑎3
′ − 𝛼(𝑎3

′ − 𝑎2). 
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3 Newton’s method 

The Newton’s method [1, 8] is an iterative scheme that generates a sequence of approximation 

to the minimum and is given as 

 𝑥𝑛+1 = 𝑥𝑛 − [𝐽(𝑥𝑛)]
−1𝐹(𝑥𝑛). (3.0) 

The direction or the correction factor, is given by  

 𝑑𝑘 = −(𝐽𝑘)
−1𝐹𝑘 (3.1) 

The Jacobian matrix 𝐽(𝑥) in (3.1) will be approximated using 𝐽(𝑥𝑘, 𝐹(𝑥𝑘)) and the new 𝑑𝑘 is 

represented as  

 𝑑𝑘 = −(𝐷𝑘)
−1𝐹𝑘 (3.2) 

where the matrix 𝐷𝑘 is component wise computed by two possible choices of forward difference 

or central difference and is defined as [7] 

 𝐷𝑘
𝑖𝑗
=

𝐹𝑖(𝑥𝑘+ℎ𝑘
𝑗
𝑒𝑗)−𝐹(𝑥𝑘)

ℎ𝑘
𝑗  (3.3) 

and 

 𝐷𝑘
𝑖𝑗
=

𝐹𝑖(𝑥𝑘+ℎ𝑘
𝑗
𝑒𝑗)−𝐹𝑖(𝑥𝑘−ℎ𝑘

𝑗
𝑒𝑗)

ℎ𝑘
𝑗  (3.4) 

with 𝑒𝑗 the j-th unit column vector.  

In this paper, we consider the derivative-free approach by adopting the forward difference 

method where 𝐷𝑘  is derived using (3.3) because Omesa et al. [16] showed that the forward 

difference method is more efficient in numerical computations. The derivative-free Newton’s 

method is presented via the following Algorithm. 

 

Algorithm 1.  Derivative-free Newton’s method 

Given 𝑥0, Solve  𝐽(𝑥𝑘, 𝐹(𝑥𝑘)) and 𝐹(𝑥𝑘) 

Compute 𝑥𝑘+1 = 𝑥𝑘 − [𝐽(𝑥𝑘, 𝐹(𝑥𝑘))]
−1𝐹(𝑥𝑘) 

    where 𝑘 = 0,1,2, …  

(3.5) 

4 Iterative approach for solving intuitionistic fuzzy 

nonlinear equations 

In this section, we intend to obtain a solution for the system of nonlinear equation 𝐹(𝑥) = 0. The 

parametric form for the membership and non-membership is represented for all 𝑟 ∈ [0,1] as: 

𝜇𝐴(𝑥) = {
𝐹(𝑥, 𝑥, 𝑟) = 0,

𝐹(𝑥, 𝑥, 𝑟) = 0,
          𝜈𝐴(𝑥) = {

𝐹̳(𝑥̳, 𝑥̿, 𝑟) = 0,

𝐹̿(𝑥̿, 𝑥̳, 𝑟) = 0.
 (4.1) 

Assume that 𝛼 = (𝛼, 𝛼) is the solution to the nonlinear system (4.1), that is, for all 𝑟 ∈ [0,1], 
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 𝜇𝐴(𝑥) = {
𝐹(𝛼, 𝛼; 𝑟) = 0,

𝐹(𝛼, 𝛼; 𝑟) = 0,
          𝜈𝐴(𝑥) = {

𝐹̳(𝛼̳, 𝛼̿; 𝑟) = 0,

𝐹̿(𝛼̿, 𝛼̳. 𝑟) = 0.
 (4.2) 

Now, if 𝑥0 = (𝑥0, 𝑥0, 𝑥̳0, 𝑥̿0) is an approximate solution for this nonlinear system, then for all 

𝑟 ∈ [0,1] there are ℎ(𝑟), 𝑘(𝑟), 𝑝(𝑥) 𝑎𝑛𝑑 𝑞(𝑥) such that  

𝛼(𝑟) =  𝑥0(𝑟) +  ℎ(𝑟),  𝛼̳(𝑟) = 𝑥̳0(𝑟) + 𝑝(𝑟), 

𝛼(𝑟) =  𝑥0(𝑟) +  𝑘(𝑟), 𝛼̿(𝑟) = 𝑥̿0(𝑟) + 𝑞(𝑟). 

Now by applying the Taylor series of 𝐹, 𝐹 about (𝑥0, 𝑥0) to the membership function and 𝐹̳, 𝐹̿ 

about (𝑥̳0, 𝑥̿0) to the non-membership function, then for all 𝑟 ∈ [0,1],  

𝐹(𝛼, 𝛼; 𝑟) = 𝐹(𝑥0, 𝑥0, 𝑟) + ℎ 𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 𝑔 𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 0(ℎ
2 + ℎ𝑘 + ℎ2) = 0 

𝐹(𝛼, 𝛼; 𝑟) = 𝐹(𝑥0, 𝑥0, 𝑟) + ℎ 𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 𝑔𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 0(ℎ
2 + ℎ𝑘 + ℎ2) = 0 

𝐹̳(𝛼̳, 𝛼̿; 𝑟) = 𝐹̳(𝑥̳0, 𝑥̿0, 𝑟) + ℎ𝐹̳𝑥̳(𝑥̳0, 𝑥̿0, 𝑟 ) + 𝑔𝐹̳𝑥̿(𝑥̳0, 𝑥̿0, 𝑟 ) + 0(ℎ
2 + ℎ𝑘 + ℎ2) = 0 

𝐹̿(𝛼̳, 𝛼̿; 𝑟) = 𝐹̿(𝑥̳0, 𝑥̿0, 𝑟) + ℎ𝐹̿𝑥̳(𝑥̳0, 𝑥̿0, 𝑟 ) + 𝑔𝐹̿𝑥̿(𝑥̳0, 𝑥̿0, 𝑟 ) + 0(ℎ
2 + ℎ𝑘 + ℎ2) = 0 

and if 𝑥0, 𝑥0, 𝑥̳0 and 𝑥̿0 are near to 𝛼, 𝛼, 𝛼̳ and 𝛼̿, respectively, then ℎ(𝑟), 𝑘(𝑟), 𝑝(𝑟) and 𝑞(𝑟) are 

small enough.  

Let us assume that all needed partial derivatives exist and are bounded. Therefore, for enough 

small ℎ(𝑟), 𝑘(𝑟), 𝑝(𝑟) and 𝑞(𝑟), where for all 𝑟 ∈ [0,1], we have, 

𝐹(𝑥0, 𝑥0, 𝑟) + ℎ𝐹 𝑥(𝑥0, 𝑥0, 𝑟) + 𝑔𝐹𝑥(𝑥0, 𝑥0; 𝑟) = 0,  

𝐹(𝑥0, 𝑥0, 𝑟) + ℎ𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 𝑔𝐹𝑥(𝑥0, 𝑥0; 𝑟) = 0,             

𝐹̳(𝑥̳0, 𝑥̿0, 𝑟) + ℎ𝐹̳ 𝑥̳(𝑥̳0, 𝑥̿0, 𝑟) + 𝑔𝐹̳𝑥̿(𝑥̳0, 𝑥̿0; 𝑟)   = 0, 

𝐹̿(𝑥̳0, 𝑥̿0, 𝑟) + ℎ𝐹̿ 𝑥̳(𝑥̳0, 𝑥̿0, 𝑟) + 𝑔𝐹̿𝑥̿(𝑥̳0, 𝑥̿0; 𝑟)  = 0, 

and hence ℎ(𝑟), 𝑘(𝑟), 𝑝(𝑟) and 𝑞(𝑟) are unknown quantities that can be obtained by solving the 

following equations, for all 𝑟 ∈ [0,1],  

 𝐽(𝑥0, 𝑥0, 𝑥̳0, 𝑥̿0, 𝑟)

(

 

ℎ(𝑟)

𝑔(𝑟)

𝑝(𝑟)

𝑞(𝑟))

 =

(

 
 

−𝐹(𝑥0, 𝑥0, 𝑟)

−𝐹(𝑥0, 𝑥0, 𝑟)

−𝐹̳(𝑥̳0, 𝑥̿0, 𝑟)

−𝐹̿(𝑥̳0, 𝑥̿0, 𝑟))

 
 

 (4.3) 

where 

 

𝐽(𝑥0, 𝑥0, 𝑥̳0, 𝑥̿0, 𝑟) =

[
 
 
 
 
 
𝐹𝑥(𝑥0, 𝑥0, 𝑟)   𝐹𝑥(𝑥0, 𝑥0, 𝑟)

𝐹𝑥(𝑥0, 𝑥0, 𝑟)   𝐹𝑥(𝑥0, 𝑥0, 𝑟)

𝐹̳𝑥̳(𝑥̳0, 𝑥̿0, 𝑟)  𝐹̳𝑥̿(𝑥̳0, 𝑥̿0, 𝑟)

𝐹̿𝑥̳(𝑥̳0, 𝑥̿0, 𝑟)  𝐹̿𝑥̿(𝑥̳0, 𝑥̿0, 𝑟) ]
 
 
 
 
 

 

is the Jacobian matrix of the function 𝐹 = (𝐹, 𝐹, 𝐹̳, 𝐹̿) evaluated in 𝑥0 = (𝑥0, 𝑥0, 𝑥̳0, 𝑥̿0).  

Hence, the next approximations for 𝑥(𝑟), 𝑥(𝑟), 𝑥̳(𝑟) and 𝑥̿(𝑟) are as follows: 
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𝑥1(𝑟) =  𝑥0(𝑟) + ℎ(𝑟), 

𝑥1(𝑟) =  𝑥0(𝑟) + 𝑘(𝑟),  

𝑥̳1(𝑟) = 𝑥̳1(𝑟) + 𝑝(𝑟), 

𝑥̿1(𝑟) = 𝑥̿1(𝑟) + 𝑞(𝑟), 
for all 𝑟 ∈ [0,1]. 

We can obtain approximated solution, 𝑟 ∈ [0,1], by using the recursive scheme 

𝑥𝑛+1(𝑟) =  𝑥𝑛(𝑟) + ℎ𝑛(𝑟), 

𝑥𝑛+1(𝑟) =  𝑥𝑛(𝑟) + 𝑘𝑛(𝑟), 

𝑥̳𝑛+1(𝑟) =  𝑥̳𝑛(𝑟) + 𝑝𝑛(𝑟),  

𝑥̿𝑛+1(𝑟) =  𝑥̿𝑛(𝑟) + 𝑞𝑛(𝑟), 

(4.4) 

when n = 1, 2, … . Analogous to (4.3) 

𝐽(𝑥𝑛, 𝑥𝑛, 𝑥̳𝑛, 𝑥̿𝑛, 𝑟)

(

 

ℎ(𝑟)

𝑔(𝑟)

𝑝(𝑟)

𝑞(𝑟))

 =

(

 
 

−𝐹(𝑥0, 𝑥0, 𝑟)

−𝐹(𝑥0, 𝑥0, 𝑟)

−𝐹̳(𝑥̳0, 𝑥̿0, 𝑟)

−𝐹̿(𝑥̳0, 𝑥̿0, 𝑟))

 
 

 

Now, if  𝐽(𝑥𝑛, 𝑥𝑛, 𝑥̳𝑛, 𝑥̿𝑛, 𝑟) is nonsingular, then from (4.2) we obtain the recursive scheme of 

Newton’s method as follows, 

[
 
 
 
 
𝑥𝑛+1(𝑟)

𝑥𝑛+1(𝑟)

𝑥̳𝑛+1(𝑟)

𝑥̿𝑛+1(𝑟)]
 
 
 
 

=  

[
 
 
 
 
𝑥𝑛(𝑟)

𝑥𝑛(𝑟)

𝑥̳𝑛(𝑟)

𝑥̿𝑛(𝑟)]
 
 
 
 

− 𝐽(𝑥𝑛, 𝑥𝑛, 𝑥̳𝑛, 𝑥̿𝑛, 𝑟)
−1

[
 
 
 
 
𝐹(𝑥𝑛, 𝑥𝑛, 𝑟)

𝐹(𝑥𝑛, 𝑥𝑛, 𝑟)

𝐹̳(𝑥̳𝑛, 𝑥̿𝑛, 𝑟)

𝐹̿(𝑥̳𝑛, 𝑥̿𝑛, 𝑟)]
 
 
 
 

. 

Finally, we present the algorithm for our proposed approach (derivative-free method) as follows: 

 

Algorithm 2. Derivative-free Newton’s method 

  Step 1. Transform the intuitionistic fuzzy nonlinear equations into parametric form. 

 Step 2. Determine the initial guess 𝑥0 by solving the parametric equations for 𝑟 = 0 and 

   𝑟 = 1 and for 𝑘 = 0,1,2… 

 Step 3. Solve 𝐽(𝑥𝑘, 𝐹(𝑥𝑘))
−1 and 𝐹(𝑥𝑘). 

 Step 4. Compute [𝐽(𝑥𝑘, 𝐹(𝑥𝑘))]
−1 via (3.3) above. 

 Step 5. Compute  𝑥𝑘+1 = 𝑥𝑘 − [𝐽(𝑥𝑘, 𝐹(𝑥𝑘))]
−1𝐹(𝑥𝑘). 

 Step 6. Repeat Step 3 to Step 5 and continue with the next k until 𝜖 ≤  10−4 are satisfied. 

5 Numerical result 

In this section, we consider two problems to illustrate the performances of the forward difference 

method applied to Newton’s iterative method without computing the Jacobian for solving 
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intuitionistic fuzzy nonlinear equations. The computations are performed in MATLAB (R2015a) 

using the double precision computer. The benchmark problems are from [18]. 
 

Example 1. Consider the engineering problem that concerns the motion of an object under an 

intuitionistic fuzzy environment, resulting in two cases. 

Case 1. Vertical motion of objects. Consider the vertical motion of the ball by neglecting air 

resistance and assuming constant acceleration of 32 ft/sec2. The positive direction of the object 𝑦 

is upward from the earth. Then, the resulting intuitionistic fuzzy nonlinear equation is written as 

 𝐴1 ∗ 𝑥(𝑟)
2 + 𝑉1 ∗ 𝑥(𝑟) = 𝑌1 (5.1) 

where the free parameter, 𝐴1 = (0.8,1.0,1.2; 0.25,1.0,1.2), velocity of the moving object under 

constant force of gravity 𝑉1 = (1.3,1.75,2.2; 1.2,1.7,2.1), and initial position of the force 

𝑌1 = (0.1,0.15,0.20; 0.1,0.13,0.18). Find the time 𝑥(𝑡) of the ball to hit the ground, which 

depends on fuzzy parameter 𝑡 = [0,1]. Equation (5.1), becomes 

(0.8,1.0,1.2; 0.25,1.0,1.2)𝑥(𝑡)2 + (1.3,1.75,2.2; 1.2,1.7,2.1)𝑥(𝑡) =
(0.1,0.15,0.20; 0.1,0.13,0.18)       (5.2) 

Without any loss of generality, let 𝑥 be positive, then the parametric form of this equation for 

membership and non-membership functions is as follows: 

    (0.8 + 0.2𝑡)𝑥2(𝑡) + (1.3 + 0.45𝑡)𝑥(𝑡) = (0.1 + 0.05𝑡) 

  (1.2 − 0.2𝑡)𝑥
2
(𝑟) + (2.2 − 0.45𝑟)𝑥 (𝑟) = (0.2 − 0.05𝑡) 

 (0.25 + 0.2𝑡)𝑥̳2(𝑟) + (1.2 + 0.50𝑟)𝑥̳(𝑟) = (0.1 + 0.05𝑡) 

   (1.2 − 0.2𝑡)𝑥̿2(𝑟) + (2.1 − 0.40𝑟)𝑥̿ (𝑟) = (0.18 − 0.07𝑡) 

(5.3) 

For 𝑟 = 0, we obtain the approximate Jacobian (3.3) as 

1.940000019967556

3.400000020861626

1.400000005960465

 3.30000001192

0

0

0 0 0

0 0 0
( , ( ))

0

92

0

0 0 0 9

k kJ x F x

 
 
 
 
 
 

 

Then the inverse is given as 

1

1.940000019967556

1

3.400000020861626

1

1.4000000

3

0 0 0

0 0 0

0 0
05960465

1

 3. 000000119209

0

0 0 0
29

 
 
 
 
 

  
 
 
 
 
 

 

obtaining the initial guess requires assuming 𝑟 = 0 and 𝑟 = 1 in the above system (5.3), therefore 

𝑟 = 0 gives 

0.8𝑥2(0) + 1.3𝑥(0) = 0.1 

1.2𝑥
2
(0) + 2.2𝑥 (0) = 0.2 

0.25𝑥̳2(0) + 1.2𝑥̳(0) = 0.1 

1.2𝑥̿2(0) + 2.1𝑥̿ (0) = 0.18 

and 𝑟 = 1 gives 
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1𝑥2(1) + 1.75𝑥(1) = 0.15 

1𝑥
2
(1) + 1.75𝑥 (1) = 0.15 

0.45𝑥̳2(1) + 1.7𝑥̳(1) = 0.15 

0.6𝑥̿2(1) + 1.7𝑥̿ (1) = 0.11 

When 𝑡 = 0, we have 𝑥(0) = 0.0736, 𝑥(0) = 0.0868, 𝑥̳(𝑡) = 0.0863, 𝑥̿ (𝑡) = 0.0733  

and when 𝑡 = 1, we have 𝑥(1) = 𝑥(1) = 𝑥̳(1) = 𝑥̿ (1) = 0.0819 and we consider 𝑥0 =

(0.4,0.5,0.4,0.5), as our initial guess. Via Algorithm 2 with 𝑥0 = (0.4,0.5,0.4,0.5) and 

approximate Jacobian 𝐽(𝑥𝑘, 𝐹(𝑥𝑘)) the number of iterations is 4 for the forward difference with 

maximum error less than 10−5. We present the details of our solution for all 𝑟 ∈ [0,1]  in Table 1 

and Figure 1. 

t 𝑥(𝑡) 𝑥 (𝑡) 𝑥̳(𝑡) 𝑥̿ (𝑡) 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.073594532594548 

0.074671646080491 

0.075679388968530 

0.076624279545864 

0.077512041333624 

0.078347721040025 

0.079135786045999 

0.079880205463002 

0.080584517912303 

0.081251888508856 

0.081885156997700 

0.086809304749426 

0.086409758542523 

0.085993290501209 

0.085558800357428 

0.085105090157568 

0.084630853158743 

0.084134661165962 

0.083614950056001 

0.083070003174197 

0.082497932238417 

0.081896655279563 

0.081934733466943 

0.082528827952354 

0.083075806073071 

0.083581048609557 

0.084049148498915 

0.084484049697644 

0.084889157719899 

0.085267428359982 

0.085621439455279 

0.085953449350112 

0.086265444846202 

0.081896655277461 

0.081190860209388 

0.080456876932336 

0.079692977756124 

0.078897290441812 

0.078067782742638 

0.077202244859066 

0.076298269572200 

0.075353229611903 

0.074364251829368 

0.073328187649919 

Table 1. Analytical solution of Problem 1 for all 𝑡 ∈ [0,1] 

 
Figure 1. Analytical and numerical approximate solution  

of intuitionistic fuzzy nonlinear equation in Example 1 
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Case 2. Downward motion of object. Consider the downward motion of an object represented 

by the following intuitionistic fuzzy nonlinear equation  

(3,4,5; 2,3,4)𝑥2 + (1,2,3; 1 2 2)𝑥 = (1,2,3; 1 2 2) 

Without any loss of generality, let 𝑥 be positive, then the parametric form of this equation for 

the membership and non-membership functions is as follows: 

(3 + 𝑟)𝑥2(𝑟) + (1 + 𝑟)𝑥(𝑟) = (1 + 𝑟) 

(5 − 𝑟)𝑥
2
(𝑟) + (3 − 𝑟)𝑥 (𝑟) = (3 − 𝑟) 

(2 + 𝑟)𝑥̳2(𝑟) + (1 + 𝑟)𝑥̳(𝑟) = (1 + 𝑟) 

(4 − 𝑟)𝑥̿2(𝑟) + (2 − 𝑟)𝑥̿ (𝑟) = (2 − 𝑟) 

For 𝑟 = 0, we obtain the approximate Jacobian (3.3) as 

3.400000043213368

8.000000059604645

2.600000031292439

6.00000005960

0

4

0 0 0

0 0 0
( , ( ))

0

64

0

0 0 0 5

k kJ x F x

 
 
 
 
 
 

 

Then the inverse is given as 

1

3.400000043213368

1

8.000000059604645

1

2.600000

0

0 0 0

0 0 0

0 0
031292439

1

6. 000000596046

0

0 0 0
45

 
 
 
 
 

  
 
 
 
 
 

 

To obtain initial guess, we let 𝑟 = 0 and 𝑟 = 1 in the above system, therefore 𝑟 = 0 gives 

   3𝑥2(0) + 𝑥(0) = 1 

5𝑥
2
(0) + 3𝑥 (0) = 3 

    2𝑥̳2(0) + 𝑥̳(0) = 1 

4𝑥̿2(0) + 2𝑥̿ (0) = 2 

and 𝑟 = 1 gives 

4𝑥2(1) + 2𝑥(1) = 2 

4𝑥
2
(1) + 2𝑥 (1) = 2 

 3𝑥̳2(1) + 2𝑥̳(1) = 2 

    3𝑥̿2(1) + 𝑥̿ (1) = 1. 

When 𝑡 = 0, we have 𝑥(0) = 0.4343, 𝑥(0) = 0.5306 , 𝑥̳(𝑡) = 0.5485, 𝑥̿ (𝑡) = 0.4343.   

And when 𝑡 = 1, we have 𝑥(1) = 𝑥(1) = 𝑥̳(1) = 𝑥̿ (1) = 0.5000 and we consider 𝑥0 =

(0.4,0.5,0.4,0.5), as our initial guess. Via Algorithm 2 with 𝑥0 = (0.4,0.5,0.4,0.5) and approx-

imate Jacobian 𝐽(𝑥𝑘, 𝐹(𝑥𝑘)), the number of iterations is 2 for the forward difference with 
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maximum error less than 10−5. We present the details of our solution for all 𝑟 ∈ [0,1] in Table 2 

and Figure 2. 

 

t 𝑥(𝑡) 𝑥 (𝑡) 𝑥̳(𝑡) 𝑥̿ (𝑡) 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.434258313829634  

0.444124152561498 

0.452934408420214 

0.460857339183747 

0.468025767652303 

0.474546360679261 

0.480505952499601 

0.485976074212196 

0.491016267869303 

0.495676556504057 

0.499999315209352    

0.530662352901064 

0.528341552083287 

0.525892369581886 

0.523303729728293  

0.520563182688385 

0.517656725736360  

0.514568548894616  

0.511280727918697 

0.507772851202120 

0.504021563036460 

0.500000000000000                               

0.499971064047340  

0.507771812473090 

0.514567101184687  

0.520561285178602 

0.525889994345204 

0.530659516263694 

0.534954407760406 

0.538842831702757  

0.542380381119442 

0.545612872153780 

0.548578418582904                                 

0.500000000000000 

0.495677089401974 

0.491016667681032 

0.485976360911993  

0.480506146707827  

0.474546482953888 

0.468025837629962 

0.460857374728988 

0.452934425250540 

0.444124165633310  

0.434258575314830                         

Table 2. Analytical solution of Problem 2 for all 𝑡 ∈ [0,1] 

 

Figure 2. Analytical and numerical approximate solution  

of intuitionistic fuzzy nonlinear equation in Case 2. 
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6 Conclusion 

A derivative-free Newton’s method for solving intuitionistic fuzzy nonlinear equations was 

presented. We were mainly interested in reducing the computational cost of the Jacobian matrix 

by computing the approximation to the Jacobian matrix throughout the iteration process. This 

was achieved by transforming the intuitionistic fuzzy nonlinear equation into parametric form 

and then solved via Newton’s method without computing the Jacobian. The numerical result 

shows that the derivative-free approach is efficient when the Jacobian is non-singular. However, 

further research is required to examine the performance of the derivative-free Newton’s method 

where the Jacobian is singular or near a singularity.  
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