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Abstract: In the paper the so-called dϕ-intuitionistic fuzzy set (dϕ-IFS), over the non-empty uni-
verse E, are considered for the case when dϕ isR2-metric induced by an arbitrary fixed absolute
normalizedR2-norm ϕ. Using a bijective isomorphism between the class of all such sets and the
class of all intuitionistic fuzzy sets over E, any operator acting over one of the mentioned classes
produces a similar operator acting on the other. Some of the operators defined over the intuition-
istic fuzzy sets and their corresponding similar operators are considered and studied in this paper
and important limit theorems are established.
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1 Basic definitions and preliminary results

Here we recall some basic definitions and properties (see e.g. [1]):

Definition 1. Let A ⊂ E and µA : E → [0, 1], νA : E → [0, 1] are mappings such that for any
x ∈ E the inequality µA(x)+νA(x) ≤ 1 holds. The set Ã = {〈x, µA(x), νA(x)〉|x ∈ E} is called
intuitionistic fuzzy set over E.

The mappings µA and νA are called membership and non-membership function. The map
πA : E → [0, 1], that for x ∈ E is introduced by πA(x)

def
= 1−µA(x)− νA(x), is called hesitancy

function.
The class of all intuitionistic fuzzy sets over E is denoted by IFS(E).
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Definition 2. AnR2-norm ϕ is called normalized norm if the equality ϕ((1, 0)) = ϕ((0, 1)) = 1

holds. The class of all normalizedR2-norms is denoted by N2.

Definition 3. AnR2-normϕ is called absolute norm if for any (µ, ν) ∈ R2 the equalityϕ((µ, ν)) =

ϕ((|µ|, |ν|)) holds. The class of all absolute normalizedR2-norms is denoted by AN2.

Let ϕ ∈ N2. Then ϕ induced R2-metric dϕ by the formula dϕ((µ1, ν1), (µ2, ν2)) = ϕ((|µ1 −
µ2|, |ν1 − ν2|)).

Let d is R2-metric. In [4], for the first time, the notion d-intuitionistic fuzzy set (d-IFS) over
E was introduced. Below we give the following

Definition 4. Let ϕ ∈ N2, A ⊂ E and µA : E → [0, 1], νA : E → [0, 1] are mappings such that
for any x ∈ E the inequality ϕ((µA(x), νA(x))) ≤ 1 holds. The set Ã = {〈x, µA(x), νA(x)〉|x ∈
E} is called dϕ-intuitionistic fuzzy set (dϕ-IFS) overE. The mappings µA and νA are called mem-
bership and non-membership function. The map πA : E → [0, 1], that for x ∈ E is introduced by
πA(x)

def
= 1− ϕ((µA(x), νA(x))), is called hesitancy function.

The class of all dϕ-intuitionistic fuzzy sets over E is denoted by dϕ-IFS(E).

Let ϕ ∈ AN2 and E is a universe set. As shown in [3], there is a bijection T between the
classes dϕ-IFS(E) and IFS(E). More specifically, if µ : E → [0, 1] and ν : E → [0, 1] are the
membership and non-membership functions for A ∈ dϕ-IFS(E) and

T (µ, ν) = (µ∗, ν∗), (1)

where:

µ∗(x) =


µ(x)

µ(x)+ν(x)
ϕ (µ(x), ν(x)) , if µ(x) + ν(x) > 0

0, if µ(x) + ν(x) = 0;
(2)

ν∗(x) =


ν(x)

µ(x)+ν(x)
ϕ (µ(x), ν(x)) , if µ(x) + ν(x) > 0

0, if µ(x) + ν(x) = 0,
(3)

then µ∗ : E → [0, 1] and ν∗ : E → [0, 1] are the membership and non-membership functions for
B = T (A) ∈ IFS(E).

Respectively, if µ∗ : E → [0, 1] and ν∗ : E → [0, 1] are the membership and non-membership
functions for a set B ∈ IFS(E) and if

T−1(µ∗, ν∗) = (µ, ν), (4)

where:

µ(x) =


µ∗(x)(µ∗(x)+ν∗(x))
ϕ(µ∗(x),ν∗(x))

, if µ∗(x) + ν∗(x) > 0

0, if µ∗(x) + ν∗(x) = 0;
(5)

ν(x) =


ν∗(x)(µ∗(x)+ν∗(x))
ϕ(µ∗(x),ν∗(x))

, if µ∗(x) + ν∗(x) > 0

0, if µ∗(x) + ν∗(x) = 0,
(6)

then µ : E → [0, 1] and ν : E → [0, 1] are the membership and non-membership functions for
A = T−1(B) ∈ dϕ-IFS(E).

Further we will use the mappings T and T−1 to obtain operators similar to operators defined
over intuitionistic fuzzy sets.
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2 Similar operators to operators defined over intuitionistic
fuzzy sets

Let L : IFS(E) → IFS(E) is an operator. Then L induces an operator
ϕ

L : dϕ-IFS(E) →
dϕ-IFS(E), which is similar to the operator L (under the similarity T ), i.e.

ϕ

L
def
= T−1LT. (7)

Remark 1. For ϕ = ϕ1 (where ϕ1 is the Manhattan norm) the operators L and
ϕ1

L coincide,
because T is the identity mapping.

The defining equality (7) allows us, using an operator L (acting over IFS(E)) to construct

its respective analogue
ϕ

L (acting over dϕ-IFS(E)). Conversely, any operator L : dϕ-IFS(E) →
dϕ-IFS(E) induces operator L

ϕ
: IFS(E)→ IFS(E), which is given by: L

ϕ

def
= TLT−1.

Below we shall consider several examples.
Let α, β ∈ [0, 1] are real parameters. The operator Hα,β : IFS(E) → IFS(E) is defined for

B = {〈x, µ∗(x), ν∗(x)〉|x ∈ E} ∈ IFS(E) by (see [2, p. 83]):

Hα,β(B)
def
= {〈x, αµ∗(x), ν∗(x) + β(1− µ∗(x)− ν∗(x))〉|x ∈ E}.

By substituting in (7) L with Hα,β, we obtain the operator
ϕ

Hα,β : dϕ-IFS(E)→ dϕ-IFS(E). The
direct computation and the defining relation

ϕ((z(x), w(x)))

z(x) + w(x)
= 1, if (z(x), w(x)) = (0, 0), (8)

lead us to the following

Lemma 1. For any x ∈ E
ϕ

Hα,β is given by the equation
ϕ

Hα,β(A) = {〈x,K(x)M(x), K(x)N(x)〉|x ∈ E},

where:

A = {〈x, µ(x), ν(x)〉|x ∈ E} ∈ dϕ-IFS(E);

K(x)
def
=

M(x) +N(x)

ϕ((M(x), N(x)))
;

M(x)
def
= αµ(x)

ϕ((µ(x), ν(x)))

µ(x) + ν(x)
;

N(x)
def
= ν(x)

ϕ((µ(x), ν(x)))

µ(x) + ν(x)
+ β(1− ϕ((µ(x), ν(x)))).

Completely analogously, if we choose for L the operator Jα,β : IFS(E)→ IFS(E), acting by
the formula (see [2, p. 83]):

Jα,β(B)
def
= {〈x, µ∗(x) + α(1− µ∗(x)− ν∗(x)), βν∗(x)〉|x ∈ E},

after calculation we obtain the following
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Lemma 2. For any x ∈ E
ϕ

Jα,β is given with the equation

ϕ

Jα,β(A) = {〈x, K̃(x)M̃(x), K̃(x)Ñ(x)〉|x ∈ E},

where:

A = {〈x, µ(x), ν(x)〉|x ∈ E} ∈ dϕ-IFS(E);

K̃(x)
def
=

M̃(x) + Ñ(x)

ϕ((M̃(x), Ñ(x)))
;

M̃(x)
def
= µ(x)

ϕ((µ(x), ν(x)))

µ(x) + ν(x)
+ α(1− ϕ((µ(x), ν(x))));

Ñ(x)
def
= βν(x)

ϕ((µ(x), ν(x)))

µ(x) + ν(x)

and (8) is valid.

Another example is the operator Gα,β : IFS(E) → IFS(E), acting by the formula (see [2, p.
82])

Gα,β(B)
def
= {〈x, αµ∗(x), βν∗(x)〉|x ∈ E}.

The direct check, after putting L = Gα,β, leads us to

Lemma 3. For any x ∈ E
ϕ

Gα,β is given through the equality

ϕ

Gα,β(A) = {〈x, αµ(x)f(x), βν(x)f(x)〉|x ∈ E},

where:

A = {〈x, µ(x), ν(x)〉|x ∈ E} ∈ dϕ-IFS(E);

f(x)
def
=

ϕ((µ(x),ν(x)))
µ(x)+ν(x)

ϕ((αµ(x),βν(x)))
αµ(x)+βν(x)

and (8) is valid .

The last example considered in the paper (assuming α + β ∈ [0, 1]) is for L = Fα,β :

IFS(E) → IFS(E), when Fα,β maps the set B = {〈x, µ∗(x), ν∗(x)〉|x ∈ E} ∈ IFS(E) into
the set Fα,β(B) = {〈x, µ∗(x) + απ∗(x), ν∗(x) + βπ∗(x)〉|x ∈ E}, and π∗ is the hesitancy func-
tion πB of B. Between πFα,β(B) and πB there exists an obvious relation

(∀x ∈ E)
(
πFα,β(B)(x) = (1− α− β)πB(x)

)
.

The direct computation gives

Lemma 4. For any x ∈ E
ϕ

Fα,β is given by the equality

ϕ

Fα,β(A) = {〈x, µ̂(x), ν̂(x)〉|x ∈ E}, (9)
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where:

µ̂(x)
def
=
(
µ(x)h(x) + απdϕ(x)

) ∆1(x)

∆2(x)
; (10)

ν̂(x)
def
=
(
ν(x)h(x) + βπdϕ(x)

) ∆1(x)

∆2(x)
(11)

and:

A = {〈x, µ(x), ν(x)〉|x ∈ E} ∈ dϕ-IFS(E);

h(x)
def
=
ϕ((µ(x), ν(x)))

µ(x) + ν(x)
;

∆1(x)
def
= ϕ((µ(x), ν(x))) + (α + β)πdϕ(x);

∆2(x)
def
= ϕ((µ(x)h(x) + απdϕ(x), ν(x)h(x) + βπdϕ(x)));

πdϕ(x) = 1− ϕ((µ(x), ν(x)))

and (8) is valid, as well as the defining equality

∆1(x)

∆2(x)
def
= 1, (12)

for the case: α = β = 0; (µ(x), ν(x)) = (0, 0).

We will show that the operator
ϕ

Fα,β is well defined. Since ∆2(x0) = 0 is only possible if:

α = β = 0; (µ(x0), ν(x0)) = (0, 0), we see that ∆1(x0) = 0, i.e.
ϕ

Fα,β is well defined because,
according to (12), ∆1(x0)

∆2(x0)
= 1.

It can be checked directly that for any x ∈ E it is valid

ϕ((µ̂(x), ν̂(x))) = ϕ((µ(x), ν(x))) + (α + β)πdϕ(x). (13)

Hence
π
dϕ;

ϕ

Fα,β(A)
(x) = (1− α− β)πdϕ(x) (14)

(where π
dϕ;

ϕ

Fα,β
is the hesitancy function for the set

ϕ

Fα,β(A)).

Remark 2. From (14) it is clear that for α+β > 0 it is fulfilled (∀x ∈ E)(π
dϕ;

ϕ

Fα,β(A)
< πdϕ(x)).

Let {αn}∞n=1 and {βn}∞n=1 be infinite sequences of non-negative numbers, satisfying for each
integer n ≥ 1 the condition

αn + βn ≤ 1. (15)

It can be checked directly that if n ≥ 1 is an integer and Fαi,βi : IFS(E)→ IFS(E) are considered

for: α = αi; β = βi, i = 1, . . . , n, and the operators
ϕ

Fαi,βi : dϕ-IFS(E)→ dϕ-IFS(E) are defined
with (7), with L = Fαi,βi , i = 1, . . . , n, then the equality

ϕ

Fαn,βn . . .
ϕ

Fα1,β1 = T−1Fen,fnT, (16)
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is valid, where: the product of the operators in the left hand side of the above equality is to be
understood as superposition; en and fn are given by:

en = α1 +
n∑
k=2

αk

k−1∏
j=1

(1− αj − βj); fn = β1 +
n∑
k=2

βk

k−1∏
j=1

(1− αj − βj); (17)

the operator Fen,fn : IFS(E) → IFS(E) coincides with the superposition Fαn,βn . . . Fα1,β1 . On
the other hand, according to (7), for L = Fen,fn , we have

ϕ

F en,fn = T−1Fen,fnT. (18)

Considering equalities (16) and (18), as well as (14), we reach the following important result:

Theorem 1. For any integer n > 1 the operator equality

ϕ

Fαn,βn . . .
ϕ

Fα1,β1 =
ϕ

F en,fn (19)

is valid and for any A ∈ dϕ-IFS(E), with hesitancy function πdϕ , the relation

(∀x ∈ E)

(
π
dϕ;

ϕ

F en,fn (A)
(x) = πdϕ(x)

n∏
i=1

(1− αi − βi)

)

holds, where αi, βi ∈ [0, 1](i = 1, . . . , n), and en and fn are given by (17).

Definition 5. For any integer n ≥ 1 and for α, β ∈ [0, 1] (such that α + β ∈ [0, 1]) we introduce

the operator
(
ϕ

Fα,β

)n
: dϕ-IFS(E) → dϕ-IFS(E) with

(
ϕ

Fα,β

)n
def
=

ϕ

Fα,β

(
ϕ

Fα,β

)n−1

, where(
ϕ

Fα,β

)0

is the identity operator.

For αi = α, βi = β, i = 1, . . . , n, from (18) and from (19), based on Definition 5, it follows

Theorem 2. For any integer n ≥ 1 and for α, β ∈ [0, 1] (such that α + β ∈ [0, 1]) the operator(
ϕ

Fα,β

)n
: dϕ-IFS(E)→ dϕ-IFS(E) can be represented as

(
ϕ

Fα,β

)n
= T−1Fen,fnT, where:

en = α + α

n∑
k=1

(1− α− β)k−1; fn = β + β
n∑
k=1

(1− α− β)k−1

and for any A ∈ dϕ-IFS(E), with hesitancy function πdϕ , is valid the relation

(∀x ∈ E)

(
π
dϕ;

(
ϕ

F en,fn

)n
(A)

(x) = πdϕ(x)(1− α− β)n

)
. (20)

Corollary 1. For α + β > 0 the representation
(
ϕ

Fα,β

)n
= T−1Fen,fnT is valid, where:

en =
α

α + β
(1− (1− α− β)n); fn =

β

α + β
(1− (1− α− β)n). (21)
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The sequences {en}∞n=1, {fn}∞n=1, defined by (17), are convergent and their limits (denoted
by e and f , respectively) satisfy the inequality e + f ≤ 1. As a result, the existence of the limit
operator Fe,f , satisfying the relation

lim
n→∞

Fen,fn
def
= F lim

n→∞
en, lim

n→∞
fn = Fe,f , (22)

is established.
From (18), (22) and from Theorem 1 (see (19)) we obtain

Theorem 3. Let the sequences {αn}∞n=1 and {βn}∞n=1 satisfy the condition

(∀m ≥ 1) (αm, βm ∈ [0, 1], αm + βm ∈ [0, 1])

and the sequences {en}∞n=1, {fn}∞n=1, are defined by (17). Then the sequence of operators
ϕ

F en,fn :

dϕ-IFS(E)→ dϕ-IFS(E) converges to the limit operator
ϕ

F e,f : dϕ-IFS(E)→ dϕ-IFS(E), given

by
ϕ

F e,f = T−1Fe,fT, where: e = lim
n→∞

en; f = lim
n→∞

fn.

As a Corollary from Theorem 2, Corollary 1 and Theorem 3 we obtain:

Corollary 2. Let α, β ∈ [0, 1]. If α + β > 0, then it is fulfilled:

(i) lim
n→∞

(
ϕ

Fα,β

)n
=

ϕ

D α
α+β

,

where
ϕ

D α
α+β

def
= T−1D α

α+β
T (23)

(ii) For any A = {〈x, µ(x), ν(x)〉|x ∈ E} ∈ dϕ-IFS(E) it is fulfilled

(∀x ∈ E)

(
lim
n→∞

π
dϕ;

(
ϕ

F en,fn

)n
(A)

(x) = 0

)
. (24)

Proof. From (21) and 1− α− β < 1 it follows:

lim
n→∞

en = e =
α

α + β
; lim
n→∞

fn = f =
β

α + β
; f = 1− e = 1− α

α + β
.

Hence:

lim
n→∞

(
ϕ

Fα,β

)n
=

ϕ

F e,1−e =
ϕ

F α
α+β

,1− α
α+β

= T−1
(
F α
α+β

,1− α
α+β

)
T = T−1

(
D α

α+β

)
T,

and due to (23) (i) is proved.
Similarly (ii) follows from (20), because of the inequality 1− α− β < 1.

46



The operators considered here depend on two real parameters α, β ∈ [0, 1]. For
ϕ

Fα,β an addi-
tional condition is imposed: α+β ∈ [0, 1]. If we consider these parameters as mappings: α : E →
[0, 1], β : E → [0, 1], then the respective point-wise operators: Hα(x),β(x), Jα(x),β(x), Gα(x),β(x),

Fα(x),β(x), are obtained. They are defined over IFS(E), and for the last of them we impose also
the restriction (∀x ∈ E)(α(x) + β(x) ∈ [0, 1]). If L denotes any of the cited above point-

wise operators, then L induces (by (7)) the corresponding point-wise operator
ϕ

L, acting over

dϕ-IFS(E). In such a way we get the point-wise operators:
ϕ

Hα(x),β(x),
ϕ

Jα(x),β(x),
ϕ

Gα(x),β(x),
ϕ

Fα(x),β(x), and the results obtained before are also valid for them. Just a small clarification is
required. For Corollary 2 the additional condition (∀x ∈ E)(α(x) + β(x) > 0) has to be im-
posed. Moreover, en, fn, (n ≥ 1) are now not real numbers, but mappings from E to [0, 1] such
that (∀x ∈ E)(en(x) + fn(x) ∈ [0, 1]). Analogously e and f are also mappings from E to [0, 1],

satisfying the condition: (∀x ∈ E)(e(x) + f(x) ≤ 1).
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