Issue:On fuzzy sets and intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/3/1/3-11
Title of paper: On fuzzy sets and intuitionistic fuzzy sets
Author(s):
Ranjit Biswas
Department of Mathematics, Indian Institute of Technology, Kharagpur - 721302, West Bengal, India
Published in: "Notes on IFS", Volume 3 (1997) Number 1, pages 3—11
Download: Download-icon.png PDF (3401  Kb, Info) Download-icon.png
Abstract: In this paper we investigate the situations where intuitionistic fuzzy set (IFS) theory is more appropriate than fuzzy set theory to deal with. We view an IFS as a collection of infinite number of i-v fuzzy sets and an i-v fuzzy set as an IFS.
Keywords: Fuzzy set, intuitionistic fuzzy set, degree of membership, degree of non-membership, degree of indeterminacy, i-v fuzzy set.
References:
  1. Aczel, J. and Daroczy, Z., On measures of information and their characterizations, Academic Press, New York, 1975.
  2. Atanassov, K.T., New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems. 61 (1994) 137-142.
  3. Atanassov, K.T., More on intuitionistic fuzzy sets, Fuzzy Sets and Systems. 33(1) (1989) 37-46.
  4. Atanassov, K.T., Issue:Remarks on the intuitionistic fuzzy sets. Part 3, Fuzzy Sets and Systems. 75 (1995) 401-402.
  5. Atanassov, K.T. and Georgiev, O, Intuitionistic fuzzy prolog, Fuzzy Sets and Systems. 53 (1993) 121-128.
  6. Atanassov, K. and Gargov, G., Intuitionistic fuzzy logic, C. R. Acad. Bulgare Sc. 43(3) (1990) 9-12.
  7. Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems. 20 (1986) 87-96.
  8. Atanassov, K. and Stoeva, S., Intuitionistic fuzzy sets : in Polish symp. on interval and fuzzy maths, Poznan (Aug. 1983) 23-26.
  9. Bassu, K., Deb. R. and Pattanaik, P.K., Soft sets : An ordinal formulation of vagueness with some applications to the theory of choice, Fuzzy Sets and Systems. 45 (1992) 45-58.
  10. Biswas, R., On rough sets and fuzzy rough sets, Bull. Pol. Aca. Sc. (Maths.) 42(4) (1994) 345-349.
  11. Biswas, R., Rough metric spaces, to appear in Bull. Pour. Sous. Ens. Flour. Appl. (BUSEFAL).
  12. Biswas, R.. Square zero (2) : reducing vagueness in zero (0), to appear in Bull. Pour. Sous. Ens. Flous. Appl. (BUSEFAL)
  13. Biswas, R.. On rough fuzzy sets, Bull. Pour. Aca. Sc. (Maths.) 42(4) (1994) 351-355.
  14. Biswas, R., An application of fuzzy sets in students evaluation, Fuzzy Sets and Systems. 74 (1995) 187-194.
  15. Black, M., Vagueness, Philos. Sci. 4 (1937) 427-455.
  16. Biswas, R., On i-v fuzzy subgroups, Fundamenta Informaticae, Vol. 26(1) (1996) 1-9.
  17. Burillo, P. and Bustinee, H., Construction theorems for intuitionistic fuzzy sets, Fuzzy Sets and Systems. 84 (1996) 271-281.
  18. Biswas, R., Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy Sets and Systems. 63 (1994) 87-90.
  19. Biswas,.R., Fuzzy subrings with interval-valued membership functions, Proceedings of the National Seminar, Jabalpur, India (1996).
  20. Dubois, D. and Prade, H., Twofold fuzzy sets and rough sets : some issues in knowledge representation, Fuzzy Sets and Systems. 23 (1987) 3-18.
  21. Dubois, D. and Prade, H., Rough fuzzy sets and fuzzy rough sets, Int. Jou. Gen. Sys. 17 (1989) 191-209.
  22. Dubois, D. and Prade, H., Fuzzy Sets and Systems : Theory and Application (Academic Press, New York, 1980).
  23. Dubois, D. and Prade, H., Toll sets and toll logic in : Fuzzy Logic, State of the art, R.Lowen and M. Roubens eds., Dordrecht : Kluwer Acad. Publ. 1993
  24. Finch, P.D., Characteristics of interest and fuzzy sets, Inform. Sc. 24 (1981) 121-134.
  25. Gorzalezany, M.B., A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems. 21 (1987) 1-17.
  26. Goguen, J.A., L - fuzzy sets, Jou. Maths. Anal. Appl. 18 (1967) 145-174.
  27. Hirota, K., Concepts of probabilistic sets, Fuzzy Sets and Systems. 5(1) (1981) 31-46.
  28. Hersh, H.M. and Caramazza, A., A fuzzy set approach to modifiers and vagueness in natural languages, Jou. Exp. Psy : Gen. 105 (1976) 254-276.
  29. Kaufmarin, A., An Intro, to The Theory of Fuzzy Subsets, Vol. 1, Acad Press, New York, 1975.
  30. Kochen, M. and Badre, A.N., On the precision of adjectives which denote fuzzy sets, Jou. Cybern. 4(1) (1976) 49-59.
  31. Mizumoto, M. and Tanaka, K., Some properties of fuzzy sets of type 2., Info, and Control. 31 (1976) 312-340.
  32. Maciver-Whelan, Fuzzy sets, the concepts of height and the hedge very, IEEE Trans, on Systems Man Cyber. SMC-8 (1978) 507-511.
  33. Nakamura, A., Fuzzy rough sets, Note on Multiple Valued Logic. 9(8) (1988) 1-8.
  34. Nanda, S. and Majumdar, S., Fuzzy rough sets, Fuzzy Sets and Systems. 45 (1992) 157-160.
  35. Pawlak, Z., Rough sets, Int. Jou. Info. Comp. Sc. 11 (1982) 341-356.
  36. Pawlak, Z., Rough sets and fuzzy sets, Fuzzy Sets and Systems. 17 (1985) 99-102.
  37. Roy, M.k. and Biswas, R., i-v fuzzy relations and Sanchez's approach to medical diagnosis, Fuzzy Sets and Systems. 47 (1992) 35-38.
  38. Saaty, T.L., Measuring the fuzziness of sets, Jou. Cybern. 4(4) (1974) 53-61.
  39. Shackle, G.L.S., Imagination and the nature of choice, Edinburgh Univ. Press. 1979.
  40. Turksen, LB., Interval valued fuzzy set based on normal forms, Fuzzy Set and Systems. 20 (1986) 191-210.
  41. Turksen, LB., Interval valued fuzzy sets and compensatory and, Fuzzy Sets and Systems. 51 (1992) 295-307.
  42. Turksen, LB. and Bilgic, T., Interval valued strict preference with Zadeh triples, Fuzzy Sets and Systems. 78 (1996) 183-195.
  43. Wang, P.Z., Fuzzy Set Theory and its Application, Shang Hai Science and Technology Publishing House, Shanghai, China, 1983.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.