8-9 October 2020 • Burgas, Bulgaria

Submission: 15 May 2020 • Notification: 31 May 2020 • Final Version: 15 June 2020

Issue:On Zadeh's intuitionistic fuzzy subtraction

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/17/4/1-4
Title of paper: On Zadeh's intuitionistic fuzzy subtraction
Author(s):
Beloslav Riečan
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica
Mathematical Institute of Slovak Acad. of Sciences, Štefánikova 49, SK-81473 Bratislava
riecanAt sign.pngfpv.umb.skriecanAt sign.pngmat.savba.sk
Krassimir Atanassov
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
kratAt sign.pngbas.bg
Presented at: 7th IWIFS, Banska Bystrica, 27 September 2011
Published in: Conference proceedings, "Notes on IFS", Volume 17 (2011) Number 4, pages 1—4
Download: Download-icon.png PDF (120  Kb, Info) Download-icon.png
Abstract: In the present remark a new operation “subtraction” is introduced on the basis of the intuitionistic fuzzy form of Zadeh’s fuzzy implication and its basic properties are studied.
Keywords: Intuitionistic fuzzy implication, Zadeh's fuzzy implication.
AMS Classification: 03E72
References:
  1. K. Atanassov, Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin, 1999.
  2. Atanassov, K. On some intuitionistic fuzzy implications. Comptes Rendus de l'Academie bulgare des Sciences, Tome 59, 2006, No. 1, 21–26.
  3. Atanassov, K. On Zadeh's intuitionistic fuzzy disjunction and conjunction. Notes on Intuitionistic Fuzzy Sets, Vol. 17, 2011, No. 1, 1–4.
  4. Atanassov, K. Second Zadeh's intuitionistic fuzzy implication. Notes on Intuitionistic Fuzzy Sets, Vol. 17, 2011, No. 3 (in press).
  5. Atanassov, K., D. Dimitrov, Intuitionistic fuzzy implications and axioms for implications. Notes on Intuitionistic Fuzzy Sets, Vol. 16, 2010, No. 1, 10–20.
  6. Chen, J. and S. Kundu, A sound and complete fuzzy logic system using Zadeh's implication operator. Lecture Notes in Computer Science, Volume 1079, 1996, 233–242.
  7. Klir, G. and B. Yuan, Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey, 1995.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.