Issue:Properties of the intuitionistic fuzzy implication →187

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/23/3/03-08)
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/23/3/03-08
Title of paper: Properties of the intuitionistic fuzzy implication →187
Author(s):
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
kratAt sign.pngbas.bg
Eulalia Szmidt
Systems Research lnstitute - Polish Academy of Sciences, ul. Newelska 6, OL-447 Warsaw, Poland
szmidtAt sign.pngibspan.waw.pl
Nora Angelova
Faculty of Mathematics and Informatics, Sofia University, 5, James Bourchier Blvd. 1164 Sofia, Bulgaria
metida.suAt sign.pnggmail.com
Published in: "Notes on IFS", Volume 23, 2017, Number 3, pages 3—8
Download: Download-icon.png PDF (157 Kb  Kb, Info) Download-icon.png
Abstract: In [4], the new intuitionistic fuzzy implication →187 is defined and some of its properties are studied. Here, new properties of the new implication are studied.
Keywords: Implication, Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
AMS Classification: 03E72
References:
  1. Atanassov, K. (1988). Two variants of intuitionistic fuzzy propositional calculus, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-5-88. Reprinted: Int J Bioautomation, 2016, 20(S1), S17–S26.
  2. Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
  3. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  4. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017) On intuitionistic fuzzy implication →187, Notes on Intuitionistic Fuzzy Sets, 23(2), 37–43.
  5. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017) On intuitionistic fuzzy implication →188, Notes on Intuitionistic Fuzzy Sets, 23(1), 6–13.
  6. Van Atten, M. (2004). On Brouwer, Wadsworth, Behnout.
  7. Brouwer, L. E. J. (1975). Collected Works, Vol. 1, North Holland, Amsterdam.
  8. Van Dalen, D. (Ed.) (1981). Brouwer’s Cambridge Lectures on Intuitionism Cambridge Univ. Press, Cambridge.
  9. Mendelson, E. (1964) Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand.
  10. Rasiova, H. & Sikorski, R. (1963) The Mathematics of Metamathematics, Pol. Acad. of Sci., Warszawa.
  11. Tabakov, M. (1986) Logics and Axiomatics, Nauka i Izkustvo, Sofia (in Bulgarian).
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.