Issue:Inverse and direct systems in the category of intuitionistic fuzzy submodules

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/20/3/13-33
Title of paper: Inverse and direct systems in the category of intuitionistic fuzzy submodules
Author(s):
Çiğdem Gündüz (Aras)
Department of Mathematics, Kocaeli University, 41380, Kocaeli, Turkey
carasgunduzAt sign.pnggmail.com
Bijan Davvaz
Department of Mathematics, Yazd University, Yazd, Iran
davvazAt sign.pngyazd.ac.ir
Published in: "Notes on IFS", Volume 20, 2014, Number 3, pages 13-33
Download: Download-icon.png PDF (274  Kb, Info) Download-icon.png
Abstract: In this paper, we define the concepts of inverse and direct systems in the category of intuitionistic fuzzy modules, and we consider some of their properties. We investigate whether or not the limits of inverse and direct systems of exact sequences of intuitionistic fuzzy modules are exact.
Keywords: Inverse and direct systems, Inverse and direct limits, Exact sequence, Fuzzy chain complex, Fuzzy module, Intuitionistic fuzzy module.
AMS Classification: 03E72, 06F10, 22F05, 54A40.
References:
  1. Ameri, R., M. M. Zahedi. Fuzzy chain complex and fuzzy homotopy. Fuzzy Sets and Systems, Vol. 112, 2000, 287–297.
  2. Atanassov, K. T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, 1986, 87–96.
  3. Atanassov, K. T. New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 61, 1994, 137–142.
  4. Davvaz, B., W. A. Dudek, Y. B. Jun. Intuitionistic fuzzy H -submodules, Information Sciences, Vol. 176, 2006, 285–300.
  5. Dold, A. Lectures on Algebraic Topology, Springer-Verlag, Berlin–Heidelberg–New York, 1972.
  6. Dudek, W. A., B. Davvaz, Y. B. Jun. On intuitionistic fuzzy subhuperquasigroups of hyperquasigroups, Information Sciences, Vol. 170, 2005, 251–262.
  7. Dudek,W. A., Y. B. Jun, B. Davvaz. Intuitionistic (S,T)-fuzzy hyperquasigroups, Soft Computing, Vol. 12, 2008, 251–262.
  8. Eilenberg, S., N. Steenrood. Foundations of algebraic topology, Princeton, 1952.
  9. Ghadiri, M., B. Davvaz. Direct system and direct limit of Hν-modules, Iranian Journal of Science & Technology, Transaction A; 28, A2, 2004, 267–275.
  10. Hang,W.-L., M.-S. Yang. On the J-divergence of intuitionistic fuzzy sets with its application to pattern recognition, Information Sciences, Vol. 178, 2008, 1641–1650.
  11. Herrlich, H., G. E. Strecker. Category Theory, Ser. Adv. Math., Allyn and Bacon, Baston, 1973.
  12. Leoreanu, V. Direct limits and Inverse Limits of SHR Semigroups, Southeast Asian Bulletion of Mathematics, Vol. 25, 2001, 421–426.
  13. Li, S.-G. Inverse limits in category L − Top (I)1, Fuzzy Sets and Systems, Vol. 108, 1999, 235–241.
  14. Li, S.-G. Inverse limits in category L − Top (II)1, Fuzzy Sets and Systems, Vol. 109, 2000, 291–299.
  15. Lopez-Permouth, S. R., D. S. Malik. On categories of fuzzy modules, Information Sciences, Vol. 52, 1990, 211–220.
  16. Massey, W. S. Homology and Cohomology theory, New York-Bassel, 1978.
  17. Milnor, J. On axiomatic homology theory, Pac. J. Math., Vol. 12, 1962, 337–341.
  18. Rosenfeld, A. Fuzzy groups, J. Math. Anal. Appl., Vol. 35, 1971, 512–517.
  19. Xu, Z., J. Chen, J. Wu. Clustering algorithm for intuitionistic fuzzy sets, Information Sciences, Vol. 178, 2008, 3775–3790.
  20. Zadeh, L. A. Fuzzy sets, Information and Control, Vol. 8, 1965, 338–353.
  21. Zahedi, M. M., R. Ameri. Fuzzy exact sequence in category of fuzzy modules, The Journal of Fuzzy Mathematics, Vol. 2, 1994, 409–424.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.