8-9 October 2020 • Burgas, Bulgaria

Submission: 15 May 2020 • Notification: 31 May 2020 • Final Version: 15 June 2020

Issue:Intuitionistic fuzzy sets or orthopair fuzzy sets?

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:eusflat-2003-153-158
Title of paper: Intuitionistic fuzzy sets or orthopair fuzzy sets?
Author(s):
Gianpiero Cattaneo
Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano–Bicocca, Via Bicocca degli Arcimboldi 8, I–20126 Milano, Italy
cattangAt sign.pngdisco.unimib.it
Davide Ciucci
Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano–Bicocca, Via Bicocca degli Arcimboldi 8, I–20126 Milano, Italy
ciucciAt sign.pngdisco.unimib.it
Presented at: 3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany, September 10-12, 2003
Published in: Conference proceedings, pages 153-158
Download: Download-icon.png PDF (96  Kb, Info) Download-icon.png
Abstract: Intuitionistic Fuzzy Sets (IFS) are defined as pairs of mutually orthogonal fuzzy sets. We discuss this approach from an algebraic point of view. As a result we characterize two implication operators on the collection of IFS, which on a particular subset of IFS behave as a Łukasiewicz and a Gödel implication.
Keywords: fuzzy sets, intuitionistic fuzzy sets, orthogonality, rough approximations.
References:
  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87–96.
  2. H. Bustince, E. Barrenechea, and V. Mohedano, Intuitionistic fuzzy s-implications, IPMU 2002, July 1–5 2002, Annecy, France, Proceedings, ESIA- Universite de Savoie, 2002, pp. 1867–1872.
  3. H. Bustince, J. Kacprzyk, and V. Mohedano, Intuitionistic fuzzy generators. Application to intuitionistic fuzzy complementation, Fuzzy Sets and Systems 114 (2000), 485–504.
  4. G. Cattaneo, Abstract approximation spaces for rough theories, Rough Sets in Knowledge Discovery 1: Methodology and Applications (L. Polkowski and A.Skowron, eds.), Studies in Fuzziness and Soft Computing, Physica–Verlag, Heidelberg, 1998, pp. 59–98.
  5. G. Cattaneo and D. Ciucci, Heyting Wajsberg algebras as an abstract environment linking fuzzy and rough sets, LNAI, vol. 2475, Springer, 2002, pp. 77–84.
  6. G. Cattaneo and D. Ciucci, Generalized negations and intuitionistic fuzzy sets: The algebraic approach, EUSFLAT`03, 2003.
  7. G. Cattaneo and G. Nistico, Brouwer-Zadeh posets and three valued Lukasiewicz posets, Fuzzy Sets Syst. 33 (1989), 165–190.
  8. B. F. Chellas, Modal logic, an introduction, Cambridge University Press, Cambridge, MA, 1988.
  9. Z. Pawlak, Information systems - theoretical foundations, Information Systems 6 (1981), 205–218.
  10. Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982), 341–356.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.