16-17 May 2019 • Sofia, Bulgaria

Submission: 21 February 2019Notification: 11 March 2019Final Version: 1 April 2019

Issue:Domination in intuitionistic fuzzy graphs

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
Title of paper: Domination in intuitionistic fuzzy graphs
Parvathi Rangasamy
Department of Mathematics, Vellalar College for Women, Erode - 638 012, Tamilnadu, India
paarvathisAt sign.pngrediffmail.com
G. Thamizhendhi
Department of Mathematics, Vellalar College for Women, Erode - 638 012, Tamilnadu, India
gthamilAt sign.pngrediffmail.com
Presented at: 14th ICIFS, Sofia, 15-16 May 2010
Published in: Conference proceedings, "Notes on IFS", Volume 16 (2010) Number 2, pages 39—49
Download: Download-icon.png PDF (147  Kb, Info) Download-icon.png
Abstract: In this paper, an attempt has been made to introduce cardinality of an intuitionistic fuzzy graph. Also, the definition of bipartite, complete bipartite, strong arc, strength of the connectedness, dominating set, domination number, independent set, independent domination number, total dominating and total domination number in intuitionistic fuzzy graphs are given. Some properties of these concepts are studied.
Keywords: Cardinality of an intuitionistic fuzzy graph, dominating set, domination number, independent set.
  1. K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, New York (1999).
  2. K. Atanassov and A. Shannon, On a generalization of intuitionistic fuzzy graphs, Notes on Intuitionistic Fuzzy Sets, 8(2002), 73-78.12(2006), 1, 24-29
  3. J. A. Bondy and U. S. R. Murthy, Graph Theory with Applications, American Elsevier Publishing Co., New York (1976).
  4. E. J. Cockayne and S. T. Hedetnieme, Towards a Theory of Domination in Graphs, Networks 7 (1977), 247-261.
  5. M. G. Karunambigai and R. Parvathi, Intuitionistic Fuzzy Graphs, Proceedings of 9th Fuzzy Days International Conference on Computational Intelligence, Advances in soft computing: Computational Intelligence,Theory and Applications, Springer-Verlag, 20 (2006), 139-150.
  6. Mordeson N. John and Nair S. Premchand, Fuzzy Graphs and Fuzzy Hypergraphs, Physica-Verlag, New York (2000).
  7. R. Parvathi, M. G. Karunambigai and K. Atanassov, Operations on Intuitionistic Fuzzy Graphs, Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), August 2009, 1396-1401.
  8. A. Shannon and K. Atanassov, A first step to a theory of the intuitionistic fuzzy graphs, Proceedings of the 1st Workshop on Fuzzy Based Expert Systems(D,Lakov,Ed.), Sofia,September 28-30, 1994,59-61.
  9. A. Somasundram and S. Somasundaram, Domination in Fuzzy Graphs-I, Pattern Recognition Letters, 19 (1998), 787-791.
  10. Yan Luo and Changrui Yu, A Fuzzy Optimization Method for Multi-Criteria Decision Making Problem Based on the Inclusion Degrees of Intuitionistic Fuzzy Sets, Journal of Information and Computing Science, 3(2) (2008), 146-152.
  11. L. A. Zadeh, Fuzzy Sets, Information Sciences, 8 (1965), 338-353.

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.