8-9 October 2020 • Burgas, Bulgaria

Submission: 15 May 2020 • Notification: 31 May 2020 • Final Version: 15 June 2020

Issue:Definition of neutrosophic logic - a generalization of the intuitionistic fuzzy logic

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:eusflat-2003-141-146
Title of paper: Definiton of neutrosophic logic - a generalization of the intuitionistic fuzzy logic
Author(s):
Florentin Smarandache
University of New Mexico, Gallup, NM 87301, USA
smarandAt sign.pngunm.edu
Presented at: 3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany, September 10-12, 2003
Published in: Conference proceedings, pages 141-146
Download: Download-icon.png PDF (160  Kb, Info) Download-icon.png
Abstract: In this paper one generalizes the intuitionistic fuzzy logic (IFL) and other logics to neutrosophic logic (NL). The differences between IFL and NL (and the corresponding intuitionistic fuzzy set and neutrosophic set) are pointed out.
Keywords: Non-Standard Analysis, Paraconsistent Logic, Dialetheism, Paradoxism, Intuitionistic Fuzzy Logic, Neutrosophic Logic.
References:
  1. Atanassov, K., Burillo, P., Bustince, H. (1995), On the intuitionistic fuzzy relations, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 2, 87 - 92.
  2. Dempster, A. P. (1967), Upper and Lower Probabilities Induced by a Multivalued Mapping, Annals of Mathematical Statistics, 38, 325-339.
  3. J. Dezert (2002), Open Questions on Neutrosophic Inference, in Multiple-Valued Logic / An International Journal, Vol. 8, No. 3, 439-472, 2002.
  4. Dinulescu-Campina, Gheorghe (2002), Modeling of Rationality... and Beyond Physics, Am. Res. Press, 109 p.
  5. Dummett, M. (1975), Wang’s paradox, Synthese, 30, 301-324.
  6. Fine, K. (1975), Vagueness, truth and logic, Synthese, 30, 265-300.
  7. Lambert, J. H. (1764), Neues Organon, Leipzig.
  8. Narinyani, A. (1980), Indefinite sets - a new type of data for knowledge representation, Preprint 232, Computer Center of the USSR Academy of Sciences, Novosibirsk (in Russian).
  9. Robinson, A. (1996), Non-Standard Analysis, Princeton University Press, Princeton, NJ.
  10. Shafer, Glenn (1976), A Mathematical Theory of Evidence, Princeton University Press, NJ.
  11. F. Smarandache (2002a), A Unifying Field in Logics: Neutrosophic Logic, in Multiple-Valued Logic / An International Journal, Vol. 8, No. 3, 385-438, 2002
  12. F. Smarandache (2002b), Neutrosophy, A New Branch of Philosophy, in Multiple-Valued Logic / An International Journal, Vol. 8, No. 3, 297-384, 2002.
  13. F. Smarandache (2002c), editor, Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, University of New Mexico, Gallup Campus, Xiquan, Phoenix, 147 p., 2002
  14. Van Fraassen, B. C. (1980), The Scientific Image, Clarendon Press.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.