Issue:Common fixed point theorems in ϵ-chainable intuitionistic fuzzy metric spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/20/3/42-52
Title of paper: Common fixed point theorems in ϵ-chainable intuitionistic fuzzy metric spaces
Author(s):
M. Jeyaraman
PG and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Tamil Nadu, India
jeya.mathAt sign.pnggmail.com
N. Nagarajan
Department of Basic Engineering, St. Joseph Polytechnic College, Tirumayam, Pudukkottai, Tamil Nadu, India
nagarajanmedAt sign.pnggmail.com
Saurabh Manro
School of Mathematics and Computer Applications, Thapar University, Patiala, Punjab, India
sauravmanroAt sign.pnghotmail.com
Published in: "Notes on IFS", Volume 20, 2014, Number 3, pages 42-52
Download: Download-icon.png PDF (184  Kb, Info) Download-icon.png
Abstract: In this paper, we prove a common fixed point by using a new notion of absorbing maps in ϵ-chainable intuitionistic fuzzy metric space with reciprocal continuity and semicompatible maps. Ours result generalizes results of Ranadive et al. [10, 11], A. Jain et al. [6], Y. Bano et al. [4] and M. Verma et al. [13] in intuitionistic fuzzy metric spaces.
Keywords: Absorbing maps, Semi-compatible mapping, Reciprocal continuity, Intuitionistic fuzzy metric space.
AMS Classification: 54H25, 47H10.
References:
  1. Alaca, C., D. Turkoglu, C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, Vol. 29, 2006, 1073–1078.
  2. Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, 1986, 87–96.
  3. Atanassov, K. New operations defined over the intuitionistic fuzzy set, Fuzzy Sets and Systems, Vol. 61, 1994, 137–142.
  4. Bano, Y., R. S. Chandel, Common fixed point theorem in Intuitionistic fuzzy metric space using absorbing maps, Int. J. Contemp. Math. Sciences, Vol. 5, 2010, No. 45, 2201–2209.
  5. George, A., P. Veermani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Vol. 64, 1994, 395–399.
  6. Jain, A., M. Singh, S. Aziz, Fixed point theorems in fuzzy metric spaces via absorbing maps, IJRRAS, Vol. 16, 2013, No. 2, 241–245.
  7. Kramosil, O., J. Michelak, Fuzzy metric and statistical metric space, Kybernetika, Vol. 11, 1975, 326–334.
  8. Manro, S., S. Kumar, S. Singh, Common fixed point theorems in intuitionistic fuzzy metric spaces, Applied Mathematics,1(1)(2010), 510–514.
  9. Park, J. H. Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, Vol. 22, 2004, 1039–1046.
  10. Ranadive, A. S., A. P. Chouhan, Fixed point theorems in ϵ-chainable fuzzy metric spaces via absorbing maps, Annals of Fuzzy Mathematics and Informatics, Vol. 1, 2011, No. 1, 45–53.
  11. Ranadive, A. S., A. P. Chouhan, Absorbing maps and fixed point theorems in fuzzy metric spaces, International Mathematical Forum, Vol. 5, 2010, No. 10, 493–502.
  12. Turkoglu, D., C. Alaca, Y. J. Cho, C. Yildiz, Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. & Computing, Vol. 22, 2006, Issue 1–2, 411–424.
  13. Verma, M., R. S. Chandel, Common fixed point theorem for four mappings in intuitionistic fuzzy metric space using absorbing maps, IJRRAS, Vol. 10, 2012, Issue 2, 286–291.
  14. Zadeh, L. A. Fuzzy sets, Information and Control, Vol. 8, 1965, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.