Issue:A note on intuitionistic fuzzy Menger spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/26/2/33-39
Title of paper: A note on intuitionistic fuzzy Menger spaces
Author(s):
A. Haydar Eş
Department of Mathematics Education, Başkent University, Bağlıca, 06490 Ankara, Turkey
haydaresAt sign.pngbaskent.edu.tr
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 26 (2020), Number 2, pages 33–39
DOI: https://doi.org/10.7546/nifs.2020.26.2.33-39
Download: Download-icon.png PDF (130  Kb, Info) Download-icon.png
Abstract: In this paper, the concepts of intuitionistic fuzzy Mengerness, intuitionistic fuzzy near Mengerness and intuitionistic fuzzy almost Mengerness are introduced and studied. We give some characterizations of intuitionistic fuzzy almost Mengerness in terms of intuitionistic fuzzy regular open or intuitionistic fuzzy regular closed.
Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy Menger spaces, Intuitionistic fuzzy near Menger spaces, Intuitionistic fuzzy almost Menger spaces.
AMS Classification: 54A40, 03E72.
References:
  1. Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 2023 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: (2016) Int. J. Bioautomation, 20(S1), S1-S6 (in English).
  2. Atanassov, K. T., & Stoeva, S. (1984). Intuitionistic L-fuzzy sets, Cybernetics and System Research, 2, 539-540.
  3. Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87-96.
  4. Chang, C. L. (1968). Fuzzy topological spaces, J. Math. Anal., 24, 182-190.
  5. Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, 81-89.
  6. Çoker, D., & Eş, A. H. (1995). On fuzzy compactness in intuitionistic fuzzy topological spaces, The Journal of Fuzzy Mathematics, 3, 899-909.
  7. Eş, A. H. (1987). Almost compactness and near compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 22, 289-295.
  8. Concilio, A. Di, & Gerla, G. (1984). Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13, 184-192.
  9. Kocinac, Lj. D. R. (1999). Star-Menger and related spaces II, Filomat, 13, 129-140.
  10. Menger, K. (1924). Einige Überdeckungssatze der Punktmengenlehre, Sitzungsberichte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik. Wiener Akademie, Wien, 133, 421-444.
  11. Parvez, A., & Khan, M. (2019). On Nearly Menger and Nearly Star-Menger Spaces, Filomat, 33 (19), 6219-6227.
  12. Rothberger, F. (1938). Eine Verscharfung dar Eigenschaft G, Fund. Math., 30, 50-55.
  13. Scheepers, M. (1996). Combinatorics of open covers I: Ramsey Theory, Topology Appl., 73, 241-266.
  14. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338-353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.