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1 Introduction

In [10] the measure extension theorem for group-valued measure was proved. The considered
domain was a family of subsets of a given set. The notion of group-valued outer measure defined
on a family of functions has been introduced in [7] where it was proved that the measurable
elements form a lattice. The theory has been development further in [8]. In this paper we present
a complete theory of group-valued outer measures on the families of functions. In Section 2 the
family of measurable elements is investigated, in Section 3 the notion of induced outer measure
is introduced. Section 4 contains the proof of Choquet lemma. The obtained results are applied
in Section 5 for the formulation and the proof of G-valued extension theorem.

2 Outer measure and µ∗-measurable elements

Let (Ω,S) be a measurable space, F be the set of all non-negative measurable functions. Let G
be a complete `-group, i.e. a structure (G,+,≤) such that (G,+) is an Abelian group, (G,≤)
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is a complete lattice (i.e. any upper bounded subset of G has the supremum) and a ≤ b implies
a + c ≤ b + c for any c ∈ G. Let 0 be the neutral element of G (i.e. a + 0 = a for any a ∈ G),
G+ = {a ∈ G; a ≥ 0}. Denote by∞ an ideal element and

G∗ = G+ ∪ {∞},

where a+∞ =∞+ a =∞+∞ =∞ for any a ∈ G and a ≤ ∞, ∞ ≤∞ for any a ∈ G.

Definition 2.1. A mapping µ∗ : F → G∗ is called an outer measure if it is satisfying the following
conditions:

1. µ∗(0) = 0,

2. f ≤ g implies µ∗(f) ≤ µ∗(g),

3. µ∗(f + g) ≤ µ∗(f) + µ∗(g) for each f, g ∈ F .

Definition 2.2. Let µ∗ : F → G∗ be an outer measure. A function f ∈ F is called µ∗-measurable
element if it holds:

µ∗(h) = µ∗(h ∧ f) + µ∗(h− (h ∧ f))

for each h ∈ F .

Remark 2.3. In this paper the operations ∧ and ∨ take precedence over the operations +, −,
thus the notation (h− h ∧ f) denotes (h− (h ∧ f)).

Theorem 2.4. Denote byM the set of all µ∗-measurable elements of F . ThenM form a lattice.

Proof.
(i) We show that if f, g are the µ∗-measurable elements, then f ∧ g is also the µ∗-measurable
element. Because µ∗ is subadditive it is sufficient to show an inequality:

µ∗(h) ≥ µ∗(h ∧ f ∧ g) + µ∗(h− h ∧ f ∧ g).

Let f, g be the µ∗-measurable elements. Then for any h ∈ F it holds:

µ∗(h) = µ∗(h ∧ f) + µ∗(h− h ∧ f)

and h ∧ f ∈ F therefore:

µ∗(h ∧ f) = µ∗(h ∧ f ∧ g) + µ∗(h ∧ f − h ∧ f ∧ g).

Then:
µ∗(h) = µ∗(h ∧ f ∧ g) + µ∗(h ∧ f − h ∧ f ∧ g) + µ∗(h− h ∧ f) ≥

≥ µ∗(h ∧ f ∧ g) + µ∗(h ∧ f − h ∧ f ∧ g + h− h ∧ f) =

= µ∗(h ∧ f ∧ g) + µ∗(h− h ∧ f ∧ g).
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It proves that f ∧ g is the µ∗-measurable element.
(ii) We show that if f, g are the µ∗-measurable elements, then f ∨ g is also the µ∗-measurable
element. Since h− h ∧ f = h ∨ f − f we have:

µ∗(h− h ∧ f) = µ∗(h ∨ f − f).

Therefore if f is µ∗-measurable then for any h ∈ F :

µ∗(h)− µ∗(h ∧ f) = µ∗(h ∨ f)− µ∗(f)

or
µ∗(h) + µ∗(f) = µ∗(h ∧ f) + µ∗(h ∨ f).

Let f, g, f ∧ g be the µ∗-measurable elements, then:

µ∗(h ∧ f ∧ g) = µ∗((h ∧ f) ∧ (h ∧ g)) =

= µ∗(h ∧ f) + µ∗(h ∧ g)− µ∗(h ∧ (f ∨ g))

and also:
µ∗(h− h ∧ f ∧ g) = µ∗((h− h ∧ f) ∨ (h− h ∧ g)) =

= µ∗(h− h ∧ f) + µ∗(h− h ∧ g)− µ∗((h− h ∧ f) ∧ (h− h ∧ g))

= µ∗(h− h ∧ f) + µ∗(h− h ∧ g)− µ∗(h− h ∧ (f ∨ g)).

Therefore:
µ∗(h ∧ (f ∨ g)) + µ∗(h− h ∧ (f ∨ g)) =

= µ∗(h ∧ f) + µ∗(h− h ∧ f) + µ∗(h ∧ g) + µ∗(h− h ∧ g)−

−µ∗(h ∧ f ∧ g)− µ∗(h− h ∧ f ∧ g) =

= µ∗(h) + µ∗(h)− µ∗(h) = µ∗(h).

It proves that f ∨ g is the µ∗-measurable element and all µ∗-measurable elements of F form a
lattice. �

3 Induced outer measure

Definition 3.1. Let H0 be a set of non-negative real functions satisfying the following conditions:

1. if f, g ∈ H0 then f ∨ g ∈ H0,

2. if f, g ∈ H0 then f ∧ g ∈ H0,

3. if f, g ∈ H0 then f + g ∈ H0,

4. if f, g ∈ H0 then f − f ∧ g ∈ H0,

Assume that to any f ∈ F there exist the functions fi ∈ H0 (i = 1, 2, . . .) such that
∞∑
i=1

fi ≥ f .
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Definition 3.2. A G-valued measure on H0 is a function µ such that:

1. µ(0) = 0

2. if f, fi ∈ H0 (i = 1, 2, . . .) and f =
∞∑
i=1

fi then µ(f) =
∞∑
i=1

µ(fi).

In the group-valued case we shall need the following structure:

Definition 3.3. Dedekind complete `-group G is called to be of countable type, if to any bounded
set A ⊂ G there exists such a countable subset B ⊂ A that∧

A =
∧

B.

Definition 3.4. Let G be a Dedekind complete `-group of countable type. Let µ be a G-valued
measure defined on H0. Then for any f ∈ F we define:

µ∗(f) =
∧{

∞∑
i=1

µ(fi); fi ∈ H0, f ≤
∞∑
i=1

fi

}
.

Theorem 3.5. The function µ∗ is an outer measure.

Proof.
(1) We prove µ∗(0) = 0. Evidently:

0 ≤ µ∗(0) ≤ µ(0) + µ(0) + ... = 0,

hence µ∗(0) = 0.

(2) We prove that f ≤ g implies µ∗(f) ≤ µ∗(g).
Let f ≤ g. By comparing the sets we get:{

∞∑
i=1

µ(fi); fi ∈ H0, f ≤
∞∑
i=1

fi

}
⊃

{
∞∑
i=1

µ(gi); gi ∈ H0, g ≤
∞∑
i=1

gi

}
.

We can see that µ∗(f) is the infimum of the larger set, so it is also a lower bound of the smaller
set. Therefore µ∗(f) ≤ µ∗(g).

(3) We prove µ∗(f + g) ≤ µ∗(f) + µ∗(g). Let f, g ∈ F , fi, gi ∈ H0 (i = 1, 2, . . .), and

f ≤
∞∑
i=1

fi, g ≤
∞∑
i=1

gi.

If µ∗(f) =∞ or µ∗(g) =∞ then the inequality holds.
Let µ∗(f) 6=∞ and µ∗(g) 6=∞. Then:

f + g ≤
∞∑
i=1

fi +
∞∑
i=1

gi

and

µ∗(f + g) ≤
∞∑
i=1

µ(fi) +
∞∑
i=1

µ(gi).
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Now we fix for a moment
∞∑
i=1

fi. Since the preceding inequality holds for any
∞∑
i=1

gi, we obtain:

µ∗(f + g)−
∞∑
i=1

µ(fi) ≤
∞∑
i=1

µ(gi),

hence:

µ∗(f + g)−
∞∑
i=1

µ(fi) ≤ µ∗(g).

Similarly the relation:

µ∗(f + g)− µ∗(g) ≤
∞∑
i=1

µ(fi)

for any fi implies:
µ∗(f + g)− µ∗(g) ≤ µ∗(f).

This completes the proof. �

Proposition 3.6. For any f ∈ F holds:

µ∗(f) =
∧
{
∞∨
n=1

µ(gn); gn ∈ H0, gn ≤ gn+1, f ≤
∞∨
n=1

gn}.

Proof.

(1) Consider any gn ∈ H0, gn ≤ gn+1, f ≤
∞∨
n=1

gn(n = 1, 2, ...). Since gn ≤ gn+1, then

gn+1 − (gn+1 ∧ gn) = gn+1 − gn.

Put f1 = g1, f2 = g2−g1, f3 = g3−g2, ... Then
n∑

i=1

fi = gn and
n∑

i=1

µ(fi) = µ(gn). Therefore:

µ∗(f) =
∧
{
∞∑
i=1

µ(fi)} ≤
∞∑
i=1

µ(fi) =
∞∨
n=1

n∑
i=1

µ(fi) =
∞∨
n=1

µ(gn)

and

µ∗(f) ≤
∧
{
∞∨
n=1

µ(gn)}.

(2) On the other hand consider any sequence (fi)
∞
i=1, fi ∈ H0, f ≤

∞∑
i=1

fi. Put gn =
n∑

i=1

fi. Then

gn ∈ H0, gn ≤ gn+1 and
∞∨
n=1

gn =
∞∑
i=1

fi ≥ f.

Therefore:
∞∨
n=1

µ(gn) =
∞∨
n=1

µ(
n∑

i=1

fi) =
∞∨
n=1

n∑
i=1

µ(fi) =
∞∑
i=1

µ(fi)

and ∧
{
∞∨
n=1

µ(gn); gn ∈ H0, gn ≤ gn+1, f ≤
∞∨
n=1

gn} ≤
∞∑
i=1

µ(fi).
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From the last inequality we get:∧
{
∞∨
n=1

µ(gn); gn ∈ H0, gn ≤ gn+1, f ≤
∞∨
n=1

gn} ≤ µ∗(f).

This completes the proof. �

Proposition 3.7. Denote by H+
0 the set of all functions g =

∞∨
n=1

gn such that gn ∈ H0,

gn ≤ gn+1 (n = 1, 2, ...). The value
∞∨
n=1

µ(gn) does not depends on the sequence (gn)∞n=1 but

only on the function g.

Proof. Let gn ∈ H0, gn ≤ gn+1, gn ↗ g and hn ∈ H0, hn ≤ hn+1, hn ↗ g then:
∞∨
n=1

(gn ∧ hm) = (
∞∨
n=1

gn) ∧ hm

gn ∧ hm ↗ g ∧ hm = hm

and
µ(gn ∧ hm)↗ µ(hm).

For each m ∈ N holds:

µ(hm) =
∞∨
n=1

µ(gn ∧ hm) ≤
∞∨
n=1

µ(gn)

and
∞∨

m=1

µ(hm) ≤
∞∨
n=1

µ(gn).

Similarly can be proved opposite inequality.

We proved that the value
∞∨
n=1

µ(gn) does not depends on the sequence (gn)∞n=1 but only on the

function g. �

Remark 3.8. For any f ∈ F there exist a function g ∈ H+
0 such that g ≥ f .

Remark 3.9. Because
∞∨
n=1

µ(gn) does not depends on the sequence (gn)∞n=1 but only on the function

g, we can define µ+ : H+
0 → G by the formula:

µ+(g) =
∞∨
n=1

µ(gn).

Using this notation we can reformulate Proposition 3.6 by the following way:

µ∗(f) =
∧
{µ+(g); g ∈ H+

0 , g ≥ f}.
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4 Choquet lemma

The Choquet lemma states that fn ↗ f implies µ∗(fn) ↗ µ∗(f). Since in general `-groups
cannot be used the usual ε-technique we shall need following structure:

Definition 4.1. Dedekind σ-complete `-group G is called to be weakly σ-distributive if for any
bounded double sequence (ai,j) such that ai,j ↘ 0(j →∞, i = 1, 2, . . .) it is

∧
ϕ∈NN

∞∨
i=1

ai,ϕ(i) = 0.

Proposition 4.2. If G is a Dedekind complete `-group of countable type then for any real non-
negative function f there exists a bounded double sequence ai,j ↘ 0 (j →∞, i = 1, 2, . . .) such
that for any ϕ : N → N there exists g ∈ H+

0 , f ≤ g such that:

µ∗(f) +
∞∨
i=1

ai,ϕ(i) ≥ µ+(g).

Proof. Since G is an `-group of countable type, by Remark 3.9 there exists a sequence (hn)∞n=1 of
elements of H+

0 such that f ≤ hn and

µ∗(f) =
∞∧
n=1

µ+(hn).

Put gn =
n∧

i=1

hi. Then f ≤ gn, gn ∈ H+
0 , gn+1 ≤ gn and:

µ∗(f) =
∞∧
n=1

µ+(gn).

Define ai,j = µ+(gj)− µ∗(f), j →∞, i = 1, 2, . . . .

Then aij ↘ 0 (j →∞, i = 1, 2, . . .). Let ϕ : N → N . Then:

∞∨
i=1

ai,ϕ(i) ≥ ai,ϕ(i) = µ+(gϕ(i))− µ∗(f).

We may put g = gϕ(i) and we obtain the inequality:

µ∗(f) +
∞∨
i=1

ai,ϕ(i) ≥ µ+(g).

This completes the proof. �

Theorem 4.3. Let G be a Dedekind complete weakly σ-distributive `-group of countable type.
Let fn, f ∈ F , fn ↗ f . Then µ∗(fn)↗ µ∗(f).

25



Proof. We shall use two properties of µ+ which are consequences of analogous properties of µ:
(1) µ+(g1) + µ+(g2) = µ+(g1 ∨ g2) + µ+(g1 ∧ g2) for any g1, g2 ∈ H+

0 ;

(2) if hn ↗ h, hn ∈ H+
0 , then also h ∈ H+

0 and µ+(h) =
∞∨
n=1

µ+(hn).

Let fn, f ∈ F , fn ↗ f . Evidently µ∗(fn) ≤ µ∗(f) and the equality holds if
∞∨
n=1

µ∗(fn) =∞.

Therefore we can assume that
∞∨
n=1

µ∗(fn) ∈ G+.

By Proposition 4.2 for any n ∈ N there exists a bounded sequence (an,i,j)i,j such that for any
ϕ : N → N there exists gn ∈ H+

0 , fn ≤ gn such that:

µ∗(fn) +
∞∨
i=1

an,i,ϕ(n+i) ≥ µ+(gn).

By the Fremlin theorem (see [8], Theorem 3.2.3) there exists a bounded double sequence
(ai,j)i,j ↘ 0 (j →∞, i = 1, 2, . . .) and such that

a ∧
( n∑

k=1

∞∨
i=1

ak,i,ϕ(i+k)

)
≤
∞∨
i=1

ai,ϕ(i)

for each k ∈ N .
By Remark 3.8 for any f ∈ F there exist such g ∈ H+

0 that g ≥ f .

Put hn = (
n∨

i=1

gi) ∧ g. Then hn ∈ H+
0 , hn ≤ hn+1 and

f =
∞∨
n=1

fn ≤
∞∨
n=1

hn,
( ∞∨

n=1

hn = (
∞∨
i=1

gi) ∧ g
)
.

Therefore:

µ∗(f2) +
∞∨
i=1

a2,i,ϕ(2+i) ≥ µ+(g2) =

= µ+(g1 ∨ g2) + µ+(g1 ∧ g2)− µ+(g1) ≥

≥ µ+((g1 ∨ g2) ∧ g) + µ∗(f1 ∧ f2)− µ∗(f1)−
∞∨
i=1

a1,i,ϕ(1+i) =

= µ+(h2) + µ∗(f1)− µ∗(f1)−
∞∨
i=1

a1,i,ϕ(1+i) =

= µ+(h2)−
∞∨
i=1

a1,i,ϕ(1+i).

Hence:

µ+(h2)− µ∗(f2) ≤
∞∨
i=1

a1,i,ϕ(1+i) +
∞∨
i=1

a2,i,ϕ(2+i)

and similarly:

µ+(hn)− µ∗(fn) ≤
n∑

k=1

∞∨
i=1

ak,i,ϕ(k+i).
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At the same time:
µ+(hn)− µ∗(fn) ≤ µ+(hn) ≤ µ+(g).

Therefore:

µ+(hn)− µ∗(fn) ≤ µ+(g) ∧
n∑

k=1

∞∨
i=1

ak,i,ϕ(k+i).

Let a = µ+(g). Then we can use Fremlin theorem and it holds:

µ+(hn)− µ∗(fn) ≤
∞∨
i=1

ai,ϕ(i).

Therefore:
∞∨
n=1

µ∗(fn) +
∞∨
i=1

ai,ϕ(i) ≥
∞∨
n=1

µ+(hn) = µ+(
∞∨
n=1

hn).

But by the Remark 3.9:

µ+(
∞∨
n=1

hn) ≥ µ∗(f).

Hence:
∞∨
n=1

ai,ϕ(i) ≥ µ∗(f)−
∞∨
n=1

µ∗(fn)

holds for any ϕ : N → N and G is weakly σ-distributive `-group, therefore we obtain:

0 =
∧
ϕ

∞∨
i=1

ai,ϕ(i) ≥ µ∗(f)−
∞∨
n=1

µ∗(fn).

This completes the proof. �

5 Measure extension theorem

Theorem 5.1. Let G be a Dedekind complete weakly σ−distributive `-group of countable type.
Let M ⊂ F be the family of all µ∗-measurable elements. Then M is a σ-complete lattice,
H0 ⊂M, and the restriction µ∗|M is a measure.

Proof. First we show thatM is a σ-complete lattice.
We have already proved, thatM is a lattice. So we have to show, that for any sequence (fn)∞n=1

of µ∗-measurable elements the functions f =
∞∨
n=1

fn and f ′ =
∞∧
n=1

fn are also µ∗-measurable

elements. Put gn =
n∨

i=1

fi for each n ∈ N . Then gn ≤ gn+1 and
∞∨
n=1

gn =
∞∨
n=1

fn = f therefore

gn ↗ f . Since gn is µ∗-measurable for each n ∈ N then for each h ∈ F holds:

µ∗(h) = µ∗(h ∧ gn) + µ∗(h− h ∧ gn).

Since f ≥ gn then h ∧ f ≥ h ∧ gn and h− h ∧ gn ≥ h− h ∧ f . Therefore:

µ∗(h− h ∧ gn) ≥ µ∗(h− h ∧ f)
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and
µ∗(h) ≥ µ∗(h ∧ gn) + µ∗(h− h ∧ f).

Since gn ↗ f also h ∧ gn ↗ h ∧ f by Choquet lemma we obtain:

lim
n→∞

µ∗(h ∧ gn) = µ∗(h ∧ f).

Therefore:
µ∗(h) ≥ µ∗(h ∧ f) + µ∗(h− h ∧ f).

Opposite inequality follows from subadditivity of outer measure µ∗.
This proves that f is also the µ∗-measurable element.

Now we show that f ′ =
∞∧
n=1

fn is a µ∗-measurable element.

Let f ′ =
∞∧
n=1

fn. Put g′n =
n∧

i=1

fi for each n ∈ N . Then g′n ≥ g′n+1 and
∞∧
n=1

g′n =
∞∧
n=1

fn = f ′

therefore g′n ↘ f ′. Since g′n is µ∗-measurable for each n ∈ N then for each h ∈M it holds:

µ∗(h) = µ∗(h ∧ g′n) + µ∗(h− h ∧ g′n).

Since g′n ≥ f ′, (n = 1, 2, . . .) then h ∧ g′n ≥ h ∧ f ′ and

µ∗(h ∧ g′n) ≥ µ∗(h ∧ f ′).

Therefore:
µ∗(h) ≥ µ∗(h ∧ f ′) + µ∗(h− h ∧ g′n).

Since g′n ↘ f then h∧ g′n ↘ h∧ f ′ and h− h∧ g′n ↗ h− h∧ f ′ then by the Choquet lemma
we obtain:

lim
n→∞

µ∗(h− h ∧ g′n) = µ∗(h− h ∧ f ′)

therefore:
µ∗(h) ≥ µ∗(h ∧ f ′) + µ∗(h− h ∧ f ′).

Opposite inequality follows from subadditivity of the outer measure µ∗.
This proves that f ′ is the µ∗-measurable elements hence the latticeM is a σ-complete lattice.

Secondly, we show that H0 ⊂M.

We already proved that for any f ∈ F it holds:

µ∗(f) =
∧
{µ+(g); g ∈ H+

0 , f ≤ g}.

Since µ∗ is subadditive than for any f ∈ F and h ∈ H0 it holds:

µ∗(f) ≤ µ∗(f ∧ h) + µ∗(f − f ∧ h).

By the Proposition 4.2 for any real non-negative function f there exists a bounded double
sequence ai,j ↘ 0 (j → ∞, i = 1, 2, . . .) such that for any ϕ : N → N there exists g ∈ H+

0 ,

f ≤ g and that:

µ∗(f) +
∞∨
i=1

ai,ϕ(i) ≥ µ+(g).

28



But:
µ+(g) = lim

n→∞
µ(gn) = lim

n→∞
[µ(gn ∧ h) + µ(gn − gn ∧ h)] =

= lim
n→∞

µ(gn ∧ h) + lim
n→∞

µ(gn − gn ∧ h) = µ+(g ∧ h) + µ+(g − g ∧ h).

Now we show that:

µ+(g ∧ h) + µ+(g − g ∧ h) ≥ µ∗(f ∧ h) + µ∗(f − f ∧ h).

Since g ≥ f then g ∧ h ≥ f ∧ h and µ+(g ∧ h) ≥ µ∗(f ∧ h).

Let us use following notation:

(g − h)+ = 0 ∨ (g − h).

If (f − h)+ = 0 and g ≥ f then (g − h)+ ≥ (f − h)+.
If (f − h)+(x) = f(x)− h(x) > 0 then

(g − h)+(x) = g(x)− h(x) ≥ f(x)− h(x) = (f − h)+(x).

Therefore:
(g − h)+ ≥ (f − h)+

and then:
0 ∨ (g − h) ≥ 0 ∨ (f − h),

(g − g) ∨ (g − h) ≥ (f − f) ∨ (f − h),

g − (g ∧ h) ≥ f − (f ∧ h).

Then also:
µ+(g − g ∧ h) ≥ µ∗(f − f ∧ h).

Hence:

µ∗(f) +
∞∨
i=1

ai,ϕ(i) ≥ µ∗(f ∧ h) + µ∗(f − f ∧ h)

for each ϕ : N → N. Therefore:

µ∗(f) = µ∗(f ∧ h) + µ∗(f − f ∧ h)

for each h ∈ H0.

Thirdly, we show that µ∗|M is a measure.
Because of the Choquet lemma it is sufficient to prove that µ∗|M is an additive. Let g, h ∈M.

Then it holds:
µ∗(f) = µ∗(f ∧ g) + µ∗(f − f ∧ g).

Put f = g + h then:

µ∗(g + h) = µ∗((g + h) ∧ g) + µ∗((g + h)− ((g + h) ∧ g)) = µ∗(g) + µ∗(h).

This completes the proof. �
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Theorem 5.2. Let σ(H0) be a σ-complete lattice generated by H0. Then σ(H0) is a σ-complete
lattice closed under the operation + and the operation (f, g) 7→ f − f ∧ g.

Proof.

1. Let f ∈ H0 and fix it for a moment. Define:

A = {g; f + g ∈ σ(H0)}.

Then H0 ⊂ A and A is a σ-complete lattice. Therefore also σ(H0) ⊂ A.

2. Now we take g ∈ σ(H0) fixed and denote:

B = {f ; f + g ∈ σ(H0)}.

We can see that for any f ∈ H0 it holds f + g ∈ σ(H0). Therefore H0 ⊂ B. Since B is a
σ-complete lattice then also σ(H0) ⊂ B.

3. Let f ∈ H0 and fix it for a moment. Define:

C = {g; f − f ∧ g ∈ σ(H0)}.

Then H0 ⊂ C and C is a σ-complete lattice. Therefore also σ(H0) ⊂ C.

4. Now we take g ∈ σ(H0) fixed and denote:

D = {f ; f − f ∧ g ∈ σ(H0)}.

We can see that for any f ∈ H0 it holds f − f ∧ g ∈ σ(H0). Therefore H0 ⊂ D. Since D
is a σ-complete lattice then also σ(H0) ⊂ D.

We have proved that for any f, g ∈ σ(H0) also f + g, f − f ∧ g ∈ σ(H0). �

Theorem 5.3. µ∗| σ(H0) = µ is a measure on the σ-complete lattice σ(H0).

Proof. Because H0 ⊂ M and the set M of all µ∗-measurable elements is σ-complete, then
σ(H0) ⊂ M and therefore µ∗| σ(H0) = µ is a restriction of the measure µ∗|M on the lattice
σ(H0). �

Theorem 5.4. There exists exactly one measure µ̄ on σ(H0) that is an extension of µ : H0 → G.

Proof. Let ν : σ(H0)→ G∗ be a measure which extending µ. Put

K = {f ∈ σ(H0); ν(f) = µ̄(f)}.

Then H0 ⊂ K and K is σ-complete lattice, therefore σ(H0) ⊂ K. Therefore for any function
f ∈ σ(H0) holds also f ∈ K an therefore ν(f) = µ̄(f) for each f ∈ σ(H0). �
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