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Abstract: Since any space of IF-sets can be embedded to an MV-algebra ([12]), and any MV-
algebra can be presented as an interval in a lattice ordered group ([9]), it is interesting to study
measures with respect to 1-groups. In this paper the group-valued outer measures are studied. The
main result is the Choquet lemma concerning lower continuity of the induced outer measure. The
result is applied to the group-valued measure extension theorem.
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1 Introduction

In [10] the measure extension theorem for group-valued measure was proved. The considered
domain was a family of subsets of a given set. The notion of group-valued outer measure defined
on a family of functions has been introduced in [7] where it was proved that the measurable
elements form a lattice. The theory has been development further in [8]. In this paper we present
a complete theory of group-valued outer measures on the families of functions. In Section 2 the
family of measurable elements is investigated, in Section 3 the notion of induced outer measure
is introduced. Section 4 contains the proof of Choquet lemma. The obtained results are applied
in Section 5 for the formulation and the proof of (G-valued extension theorem.

2  Outer measure and ;/*-measurable elements

Let (€2, S) be a measurable space, F be the set of all non-negative measurable functions. Let G
be a complete /-group, i.e. a structure (G, +, <) such that (G, +) is an Abelian group, (G, <)
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is a complete lattice (i.e. any upper bounded subset of GG has the supremum) and a < b implies
a+c < b+ cforany ¢ € G. Let 0 be the neutral element of GG (i.e. a + 0 = a for any a € G),
Gt ={a € G;a > 0}. Denote by co an ideal element and

G* = GT U {0},
where a + 00 =00+a =00+ 00 =00 foranya € G and a < 0o, co < oo forany a € G.

Definition 2.1. A mapping u* : F — G* is called an outer measure if it is satisfying the following
conditions:

1 p(0) =0,
2. f < gimplies p*(f) < p*(g),
3w (f+g) < p(f) + () for each f,g € F.

Definition 2.2. Let u* : F — G* be an outer measure. A function f € F is called ji*-measurable
element if it holds:

pr(h) = p(h A f) + p*(h = (h A f))
for each h € F.

Remark 2.3. In this paper the operations N and \ take precedence over the operations +, —,
thus the notation (h — h A f) denotes (h — (h A\ f)).

Theorem 2.4. Denote by M the set of all 1*-measurable elements of F. Then M form a lattice.

Proof.

(1) We show that if f, g are the p*-measurable elements, then f A g is also the p*-measurable
element. Because p* is subadditive it is sufficient to show an inequality:

pr(h) > (hAfAg)+u(h—hAfAg).
Let f, g be the p*-measurable elements. Then for any ~ € F it holds:
pr(h) = p (A f)+u(h—hAf)
and h A f € F therefore:
whAf)=p (hANfAg)+p (hANf—=hATAg).

Then:
pr(h) = (hANfAG) +p (RANf=hAFAG) +p (h—hAf)>
> (hANfANG) +p (RANf—hANfAgG+h—hAf)=
=p (hANfAG) +p(h—hAfNAg).
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It proves that f A g is the p*-measurable element.
(71) We show that if f, g are the p*-measurable elements, then f V g is also the p*-measurable
element. Since h —h A f =hV f — f we have:

Wh—hAf) =" (hV f = ).
Therefore if f is pu*-measurable then for any h € F:
pr(h) = (h A f) = p(h v f) = @ (f)
or
pr(h) + = (f) = p (b A f) + (B V ).
Let f, g, f A g be the p*-measurable elements, then:
A fAg) = (BAF)N(RAg)) =

= (WA f)+u (hAg) = (RA(fVg))

and also:
ph=hnfANg)=p((h=hANf)V(h=hNAg))=
=p(h=hNf)+p(h=hANg)—p((h—hAf)AN(h=hAg))
=W (h=hNf)+p(h=hNg)—p(h—hA(fVg)).
Therefore:

whA(fVg)+u(h=hA(fVyg) =
=W (hAf)+p*(h=hAf)+p (hAg)+p(h—hAg)—
—w(hANfAg) = (h—hAfAg)=
= p*(h) + p*(h) — p*(h) = p*(h).

It proves that f V g is the p*-measurable element and all ;*-measurable elements of F form a
lattice. U

3 Induced outer measure
Definition 3.1. Let H, be a set of non-negative real functions satisfying the following conditions:
1. if f,g € Hythen f V g € Hy,
2. if f,g € Hythen f N\ g € H,,
3. iff,g € Hythen f + g € H,,
4. if f,g€ Hythen f — f N g € Hy,

Assume that to any [ € F there exist the functions f; € Hy (i = 1,2,...) suchthat >, f; > f.
i=1
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Definition 3.2. A G-valued measure on H is a function i such that:
1. u(0)=0
20 f, fi€ Hy(i=1,2,..)and f =>_ fithen u(f) = > u(f:).
i=1 i=1
In the group-valued case we shall need the following structure:

Definition 3.3. Dedekind complete (-group G is called to be of countable type, if to any bounded
set A C G there exists such a countable subset B C A that

ANA=NA\B
Definition 3.4. Let G be a Dedekind complete (-group of countable type. Let p be a G-valued
measure defined on Hy. Then for any f € F we define:

=\ {Zu(fi); fie Hy f < Zfl} .
i=1 i=1
Theorem 3.5. The function p* is an outer measure.

Proof.
(1) We prove 1*(0) = 0. Evidently:

0 < p*(0) < p(0) +p(0) +... =0,

hence *(0) = 0.

(2) We prove that f < g implies p*(f) < u*(g).
Let f < g. By comparing the sets we get:

{Zﬂ(fi)§ fi € Hy, [ < Zfz} D {ZM(%); gi € Hy, g < Zgz}

We can see that 1" ( f) is the infimum of the larger set, so it is also a lower bound of the smaller
set. Therefore 1" (f) < p*(g).

(3)YVernove/t(f’+-g) < w(f) +u(g). Let f,g € F, fi,g € Ho (1 = 1,2,...), and
f<qug<Zgz

If u *(f) =00 or 1*(g) = oo then the inequality holds.
Let p*(f) # oo and p*(g) # oo. Then:

FHg<) fi+t) g
i=1 =1
and

w(f+9) sz u(fi) + 3 nig)
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Now we fix for amoment ) _ f;. Since the preceding inequality holds for any > g;, we obtain:

i=1 =1

w(f+9) - Zufz SZ

hence:

w(f+9) - Zu fi) <

Similarly the relation:
w(f+9) Z (f:)

for any f; implies:
p(f+9) = (g) < p (f)-

This completes the proof.
Proposition 3.6. For any f € F holds:

= /\{\/ M(gn)7 gn € Ho, 9n S 9n+1, f S \/ gn}
n=1 n=1

Proof.

(1) Consider any g, € Hy, gn < gns1, [ < V gu(n = 1,2,...). Since g, < gny1, then
=1

In+1 — (gnJrl A gn> = Gn+1 — 9n-

Put fi = g1, fo=92—01, f3 =93—G2,... Then Y fi = gy and > pu(fi) = p(yg
= =1

o0

= AN ulf)y €3t = VS uth) =\ ato)

n=1 i=1 n=1

and

< ALV non)}

(2) On the other hand consider any sequence (f;)32,, fi € Ho, f <> f;-Putg, =
i=1

gn € Ho, gn < gnprand \/ g, => fi > f.
n=1 1=

Therefore: . .

V wlge) = N iy f) = D_wlhi) =D )

n=1 n=1 1=

and

/\{\/ :u(gn)7 9n € Ho, gn < Gnar, [ < \/ gn} < Z/L(fl)
n=1 n=1 i=1
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From the last inequality we get:

/\{\/ y’(gn); gn € HO) 9n S 9n+1, f S \/ gn} S M*(f)
n=1 n=1
This completes the proof. U

Proposition 3.7. Denote by H{ the set of all functions g = \/ g, such that g, € Hy,
n=1

gn < gny1 (n = 1,2,...). The value \/ u(g,) does not depends on the sequence (g,)> | but
n=1

only on the function g.

Proof. Let 9In € H07gn < In+159n /( g and hn € Hﬂyhn < hn—i—la hn /‘ g then:

\/gn/\h = \/gn m
n=1

Gn Nl G N By = hip
and
(1(gn A ) 7 1B
For each m € N holds:

=\ 1lgn A ) < \/ 11(g0)
n=1

n=1

and

V whn) < \/ nlgn)

m=1

Similarly can be proved opposite inequality.

We proved that the value \/ 1(gn) does not depends on the sequence (g, )22, but only on the

function g. 0

Remark 3.8. For any f € F there exist a function g € H; such that g > f.

Remark 3.9. Because \/ 1(gn) does not depends on the sequence (g,,)>>_, but only on the function

g, we can define it : H I — G by the formula:

o

= \/ nlg

Using this notation we can reformulate Proposition 3.6 by the following way:

= Nu"9); g Hf, g> f}.
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4 Choquet lemma

The Choquet lemma states that f, ' f implies p*(f,) / p*(f). Since in general ¢-groups
cannot be used the usual e-technique we shall need following structure:

Definition 4.1. Dedekind o-complete (-group G is called to be weakly o-distributive if for any
bounded double sequence (a; ;) such that a; ; \, 0(j — 00,1 =1,2,...)itis

/\ \/ Qg (i) = 0.
peENN i=1

Proposition 4.2. If G is a Dedekind complete (-group of countable type then for any real non-
negative function f there exists a bounded double sequence a;; 0 (j — 00,1 =1,2,...) such
that for any o : N — N there exists g € Hy | f < g such that:

©(f) + \/ i) > 17 (9).

Proof. Since G is an (-group of countable type, by Remark 3.9 there exists a sequence (h,,)>2 ; of
elements of Har such that f < h,, and

Put g, = A h;. Then f < g,, g, € HS, gns1 < g, and:
=1

w(f) =\ 1 (gn)-
n=1
Define a; j = pu*(g;) — p*(f), j =00, 1 =1,2,... .

Thena;; 0 (j = 00, i=1,2,...). Let o : N — N. Then:

o0

\/ Wipi) = Wip(i) = I (Goiy) — 15 (f)-
=1

We may put g = g,(;) and we obtain the inequality:

w(f)+ \/ Wiy > 1 (g).
i=1

This completes the proof. U

Theorem 4.3. Let G be a Dedekind complete weakly o-distributive (-group of countable type.
Let f, f € F, fu /[ Then p*(fn) / 1 (f)-
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Proof. We shall use two properties of ™ which are consequences of analogous properties of fi:
(D (1) + 1 (g2) = pH (g1 V g2) + ¥ (91 A g2) for any g1, g2 € Hy';
(2) ifh, /*h,h, € Hf,thenalso h € Hy and u*(h) = \/ u"(h,).
n=1

Let f,,, f € F, f. 7 f. Evidently p*(f,) < p*(f) and the equality holds if \/ p*(f,) = occ.

n=1

Therefore we can assume that \/ p*(f,) € G™.
n=1

By Proposition 4.2 for any n € N there exists a bounded sequence (a,,; ;);,; such that for any
¢ : N — N there exists g, € Hy, fn < gy such that:

1 (fa) + \ tnipmrny = 17 (g0)-
=1

By the Fremlin theorem (see [8], Theorem 3.2.3) there exists a bounded double sequence
(a;;)i; \«0(j = 00,i=1,2,...) and such that

an ( Z \/ ak,z‘,so(m)) < \/ Qi p (i)

k=1 i=1 i=1
foreach k € N.
By Remark 3.8 for any f € F there exist such g € H thatg > f.
Put h,, = (\/ ¢;) A g. Then h,, € H , h, < h, 1, and
i=1

n=1 n=1 n=1 i=1

Therefore: -
1w (f2) + \/ A2 pati) > 1 (g2) =
i=1
=u (1 Vg)+ (g1 Age) =t (o) >
> (g1 V g2) Ag) + it (fi A f2) = 1 (f1) = \ v =
i=1
= it (h2) + 1 (f1) = () =\ @ripasn =
i=1
= M+(h2) - \/ Q1 i,p(14i) -
i=1

Hence:

1 (he) — p(f2) < \/ A1i,p(144) T \/ A2,i,p(2+4)
i=1 i=1
and similarly:

w(hn) = (fn) < Z \/ Qi p(k+i) -

k=1 1i=1

26



At the same time:
wh(hy) — 1 (fo) < pt(h) < pt(g).

Therefore:

n o0

i (hn) = 17 (fn) <t (g) A \/ Ak i (ki) -
k=

1i=1
Let a = " (g). Then we can use Fremlin theorem and it holds:

() = () < \/ @igoii)-
i=1

Therefore: . . . .
V w(F) + V aigy = \ 1 (ha) = 1 (\/ ho)
n=1 i=1 n=1 n=1
But by the Remark 3.9: N
Jr(\/ hn) > ,U*(f>
Hence: -

\/ Qi) = 1 (f) — \/ ©(fn)
n=1 n=1

holds for any ¢ : N — N and G is weakly o-distributive /-group, therefore we obtain:
0= /\ \/ai,cp(i) > (f) — \/ 1 (fa)-
p =1 n=1

This completes the proof. U

5 Measure extension theorem

Theorem 5.1. Let G be a Dedekind complete weakly o—distributive (-group of countable type.
Let M C F be the family of all p*-measurable elements. Then M is a o-complete lattice,
Hy C M, and the restriction p*| M is a measure.

Proof. First we show that M is a o-complete lattice.
We have already proved, that M is a lattice. So we have to show, that for any sequence ( f,,)5°,
oo

of p*-measurable elements the functions f = \/ fnand f/ = A f, are also p*-measurable
n 1

elements. Put g, = \/ fi foreachn € N. Then g, < g,.1 and \/ Gn = \/ fn = [ therefore
n=1

gn " f. Since g, is u -measurable for each n € N then for each h € F holds
' (h) = p*(h A gn) + 0 (h = h A gy).
Since f > g, thenh A f > hAg,and h —h A g, > h — h A f. Therefore:
p(h—hAgy) = p(h—hA[f)
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and
p(h) = p*(h A gn) + p*(h = h A f).
Since g, ' falso h A g, / h A f by Choquet lemma we obtain:
Jim (A A ga) = (R A ).
Therefore:
W) > @ (WA f) + @ (h—hA ).
Opposite inequality follows from subadditivity of outer measure *.

This proves that f is also the ;*-measurable element.

o0
Now we show that f' = A f, is a u*-measurable element.
n:l

Let f/ = /\ fn- Putg, = /\ fi foreachn € N. Then g;, > g/, ,, and /\ g, = /\ fo=1f
=1
therefore g/, \ f’ Since ¢/, is u measurable for each n € N then for each h e Mit holds

e (h) = p*(h A gp) + p(h = h A gp).
Since g/, > f',(n=1,2,...)then h A g, > h A f’ and
p(hAgn) = (hAf7).
Therefore:
pr(h) = p (A f) + p(h =R A gy).
Since g/, \, fthenh A g, \ hA fandh—hAg,, /*h—hA f then by the Choquet lemma

we obtain:
lim p*(h—hAgy,)=p"(h—hAf)

n—oo

therefore:
() > (WA )+ i (h—h A ).
Opposite inequality follows from subadditivity of the outer measure p*.
This proves that f’ is the ;1*-measurable elements hence the lattice M is a o-complete lattice.

Secondly, we show that Hy C M.
We already proved that for any f € F it holds:

= Nu9); g HY, f <g}.

Since p* is subadditive than for any f € F and h € H) it holds:

p () <t (fAD)+p(f = FAh).

By the Proposition 4.2 for any real non-negative function f there exists a bounded double
sequence a;; N\, 0 (j = 00,7 = 1,2,...) such that for any ¢ : N — N there exists g € Hy,
f < g and that:

w(f)+ \/ Qi) = W (g).

=1
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But:
p(g) = lim pu(gn) = lim [u(gn A ) + p(gn = gn A h)] =
= lim pu(gn Ah) + lim pi(gn — gn AB) = i (g AR) + 17 (g —g A ).
Now we show that:
pr(gAR) +pt(g—gAh) = (f ANR)+ " (f — f Ah).

Since g > ftheng Ah > fAhand u™(gAh) > p*(f Ah).
Let us use following notation:

(g—h)" =0V (9—h).

If (f—h)"=0andg > fthen (g —h)" > (f —h)".
If (f —h)"(x) = f(x) — h(xz) > 0 then

(9 —h)"(z) = g(z) — h(z) > f(z) = h(z) = (f = h) ().

Therefore:
(g=h)"=(f=h)"
and then:
0V (g—h)=0V(f=h),
(g=g)V(ig=h)=(f=HV(f—h),

g—(gNh)=>f—=(fAh).

Then also:
(g —gnh)>p'(f—fAh).

Hence:

W)+ tipe = 1 (fFAR) +p*(f = f A D)

i=1
for each ¢ : N — N. Therefore:

pw(f)=p (f AR)+p*(f = fAR)
foreach h € H,.

Thirdly, we show that p*| M is a measure.
Because of the Choquet lemma it is sufficient to prove that ;*| M is an additive. Let g, h € M.
Then it holds:

w(f) =w(f Ng)+ ' (f=fAg)
Put f = g + h then:

pg+h)=p((g+h)Ag)+u ((g+h)—((g+h)Ag))=u(g)+ pu (h)

This completes the proof. U

29



Theorem 5.2. Let 0(H,) be a o-complete lattice generated by Hy. Then o(Hy) is a o-complete
lattice closed under the operation + and the operation (f,g) — f — f N g.

Proof.

1. Let f € Hy and fix it for a moment. Define:

A={g; f+gea(H)}
Then Hy C A and A is a o-complete lattice. Therefore also o(H,) C A.

2. Now we take g € o(H,) fixed and denote:

B={f; f+g¢€o(H)}

We can see that for any f € Hy itholds f + g € o(H,). Therefore Hy C B. Since B is a
o-complete lattice then also o(H,) C B.

3. Let f € Hj and fix it for a moment. Define:
C={g; f—fNgea(H}
Then Hy C C and C'is a o-complete lattice. Therefore also o(Hy) C C.
4. Now we take g € o(H,) fixed and denote:
D=A{f; f—fNge€a(t)}

We can see that for any f € Hyitholds f — f A g € o(H,). Therefore Hy C D. Since D
is a o-complete lattice then also o(H,) C D.

We have proved that for any f, g € o(Hy) also f + g, f — f ANg € o(H)p). O

Theorem 5.3. 1*| o(Hy) = i is a measure on the o-complete lattice o (H).

Proof. Because Hy, C M and the set M of all p*-measurable elements is o-complete, then
o(Hy) C M and therefore p*| o(Hy) = [ is a restriction of the measure p*| M on the lattice
O'(Ho). O]

Theorem 5.4. There exists exactly one measure [i on o(Hy) that is an extension of i : Hy — G.

Proof. Letv : 0(Hy) — G* be a measure which extending . Put

K ={fea(Ho);v(f) = p(f)}

Then Hy C K and K is o-complete lattice, therefore o(Hy) C K. Therefore for any function
f € o(Hp) holds also f € K an therefore v(f) = fi(f) for each f € o(H,). O
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