$10^{\text {th }}$ Int. Workshop on IFSs, Banská Bystrica, 29 Sept. 2014
 Notes on Intuitionistic Fuzzy Sets
 ISSN 1310-4926

Vol. 20, 2014, No. 4, 19-31

On the extension of group-valued measures

Alžbeta Michalíková
Department of Mathematics, Faculty of Natural Sciences
Matej Bel University
Tajovského 40, SK - 97401 Banská Bystrica, Slovakia
e-mail: alzbeta.michalikova@umb.sk

Abstract

Since any space of IF-sets can be embedded to an MV-algebra ([12]), and any MValgebra can be presented as an interval in a lattice ordered group ([9]), it is interesting to study measures with respect to l-groups. In this paper the group-valued outer measures are studied. The main result is the Choquet lemma concerning lower continuity of the induced outer measure. The result is applied to the group-valued measure extension theorem.

Keywords: Measure, G-valued outer measure.
AMS Classification: 03E72.

1 Introduction

In [10] the measure extension theorem for group-valued measure was proved. The considered domain was a family of subsets of a given set. The notion of group-valued outer measure defined on a family of functions has been introduced in [7] where it was proved that the measurable elements form a lattice. The theory has been development further in [8]. In this paper we present a complete theory of group-valued outer measures on the families of functions. In Section 2 the family of measurable elements is investigated, in Section 3 the notion of induced outer measure is introduced. Section 4 contains the proof of Choquet lemma. The obtained results are applied in Section 5 for the formulation and the proof of G-valued extension theorem.

2 Outer measure and μ^{*}-measurable elements

Let (Ω, \mathcal{S}) be a measurable space, \mathcal{F} be the set of all non-negative measurable functions. Let G be a complete ℓ-group, i.e. a structure $(G,+, \leq)$ such that $(G,+)$ is an Abelian group, (G, \leq)
is a complete lattice (i.e. any upper bounded subset of G has the supremum) and $a \leq b$ implies $a+c \leq b+c$ for any $c \in G$. Let 0 be the neutral element of G (i.e. $a+0=a$ for any $a \in G$), $G^{+}=\{a \in G ; a \geq 0\}$. Denote by ∞ an ideal element and

$$
G^{*}=G^{+} \cup\{\infty\}
$$

where $a+\infty=\infty+a=\infty+\infty=\infty$ for any $a \in G$ and $a \leq \infty, \infty \leq \infty$ for any $a \in G$.
Definition 2.1. A mapping $\mu^{*}: \mathcal{F} \rightarrow G^{*}$ is called an outer measure if it is satisfying the following conditions:

1. $\mu^{*}(0)=0$,
2. $f \leq g$ implies $\mu^{*}(f) \leq \mu^{*}(g)$,
3. $\mu^{*}(f+g) \leq \mu^{*}(f)+\mu^{*}(g)$ for each $f, g \in \mathcal{F}$.

Definition 2.2. Let $\mu^{*}: \mathcal{F} \rightarrow G^{*}$ be an outer measure. A function $f \in \mathcal{F}$ is called μ^{*}-measurable element if it holds:

$$
\mu^{*}(h)=\mu^{*}(h \wedge f)+\mu^{*}(h-(h \wedge f))
$$

for each $h \in \mathcal{F}$.
Remark 2.3. In this paper the operations \wedge and \vee take precedence over the operations,,+thus the notation $(h-h \wedge f)$ denotes $(h-(h \wedge f))$.

Theorem 2.4. Denote by \mathcal{M} the set of all μ^{*}-measurable elements of \mathcal{F}. Then \mathcal{M} form a lattice.
Proof.
(i) We show that if f, g are the μ^{*}-measurable elements, then $f \wedge g$ is also the μ^{*}-measurable element. Because μ^{*} is subadditive it is sufficient to show an inequality:

$$
\mu^{*}(h) \geq \mu^{*}(h \wedge f \wedge g)+\mu^{*}(h-h \wedge f \wedge g) .
$$

Let f, g be the μ^{*}-measurable elements. Then for any $h \in \mathcal{F}$ it holds:

$$
\mu^{*}(h)=\mu^{*}(h \wedge f)+\mu^{*}(h-h \wedge f)
$$

and $h \wedge f \in \mathcal{F}$ therefore:

$$
\mu^{*}(h \wedge f)=\mu^{*}(h \wedge f \wedge g)+\mu^{*}(h \wedge f-h \wedge f \wedge g) .
$$

Then:

$$
\begin{gathered}
\mu^{*}(h)=\mu^{*}(h \wedge f \wedge g)+\mu^{*}(h \wedge f-h \wedge f \wedge g)+\mu^{*}(h-h \wedge f) \geq \\
\geq \mu^{*}(h \wedge f \wedge g)+\mu^{*}(h \wedge f-h \wedge f \wedge g+h-h \wedge f)= \\
=\mu^{*}(h \wedge f \wedge g)+\mu^{*}(h-h \wedge f \wedge g) .
\end{gathered}
$$

It proves that $f \wedge g$ is the μ^{*}-measurable element.
(ii) We show that if f, g are the μ^{*}-measurable elements, then $f \vee g$ is also the μ^{*}-measurable element. Since $h-h \wedge f=h \vee f-f$ we have:

$$
\mu^{*}(h-h \wedge f)=\mu^{*}(h \vee f-f) .
$$

Therefore if f is μ^{*}-measurable then for any $h \in \mathcal{F}$:

$$
\mu^{*}(h)-\mu^{*}(h \wedge f)=\mu^{*}(h \vee f)-\mu^{*}(f)
$$

or

$$
\mu^{*}(h)+\mu^{*}(f)=\mu^{*}(h \wedge f)+\mu^{*}(h \vee f) .
$$

Let $f, g, f \wedge g$ be the μ^{*}-measurable elements, then:

$$
\begin{aligned}
& \mu^{*}(h \wedge f \wedge g)=\mu^{*}((h \wedge f) \wedge(h \wedge g))= \\
= & \mu^{*}(h \wedge f)+\mu^{*}(h \wedge g)-\mu^{*}(h \wedge(f \vee g))
\end{aligned}
$$

and also:

$$
\begin{gathered}
\mu^{*}(h-h \wedge f \wedge g)=\mu^{*}((h-h \wedge f) \vee(h-h \wedge g))= \\
=\mu^{*}(h-h \wedge f)+\mu^{*}(h-h \wedge g)-\mu^{*}((h-h \wedge f) \wedge(h-h \wedge g)) \\
=\mu^{*}(h-h \wedge f)+\mu^{*}(h-h \wedge g)-\mu^{*}(h-h \wedge(f \vee g)) .
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
\mu^{*}(h \wedge(f \vee g))+\mu^{*}(h-h \wedge(f \vee g))= \\
=\mu^{*}(h \wedge f)+\mu^{*}(h-h \wedge f)+\mu^{*}(h \wedge g)+\mu^{*}(h-h \wedge g)- \\
-\mu^{*}(h \wedge f \wedge g)-\mu^{*}(h-h \wedge f \wedge g)= \\
=\mu^{*}(h)+\mu^{*}(h)-\mu^{*}(h)=\mu^{*}(h) .
\end{gathered}
$$

It proves that $f \vee g$ is the μ^{*}-measurable element and all μ^{*}-measurable elements of \mathcal{F} form a lattice.

3 Induced outer measure

Definition 3.1. Let H_{0} be a set of non-negative real functions satisfying the following conditions:

1. if $f, g \in H_{0}$ then $f \vee g \in H_{0}$,
2. if $f, g \in H_{0}$ then $f \wedge g \in H_{0}$,
3. if $f, g \in H_{0}$ then $f+g \in H_{0}$,
4. if $f, g \in H_{0}$ then $f-f \wedge g \in H_{0}$,

Assume that to any $f \in \mathcal{F}$ there exist the functions $f_{i} \in H_{0}(i=1,2, \ldots)$ such that $\sum_{i=1}^{\infty} f_{i} \geq f$.

Definition 3.2. A G-valued measure on H_{0} is a function μ such that:

1. $\mu(0)=0$
2. if $f, f_{i} \in H_{0}(i=1,2, \ldots)$ and $f=\sum_{i=1}^{\infty} f_{i}$ then $\mu(f)=\sum_{i=1}^{\infty} \mu\left(f_{i}\right)$.

In the group-valued case we shall need the following structure:
Definition 3.3. Dedekind complete ℓ-group G is called to be of countable type, if to any bounded set $A \subset G$ there exists such a countable subset $B \subset A$ that

$$
\bigwedge A=\bigwedge B
$$

Definition 3.4. Let G be a Dedekind complete ℓ-group of countable type. Let μ be a G-valued measure defined on H_{0}. Then for any $f \in \mathcal{F}$ we define:

$$
\mu^{*}(f)=\bigwedge\left\{\sum_{i=1}^{\infty} \mu\left(f_{i}\right) ; f_{i} \in H_{0}, f \leq \sum_{i=1}^{\infty} f_{i}\right\}
$$

Theorem 3.5. The function μ^{*} is an outer measure.
Proof.
(1) We prove $\mu^{*}(0)=0$. Evidently:

$$
0 \leq \mu^{*}(0) \leq \mu(0)+\mu(0)+\ldots=0
$$

hence $\mu^{*}(0)=0$.
(2) We prove that $f \leq g$ implies $\mu^{*}(f) \leq \mu^{*}(g)$.

Let $f \leq g$. By comparing the sets we get:

$$
\left\{\sum_{i=1}^{\infty} \mu\left(f_{i}\right) ; f_{i} \in H_{0}, f \leq \sum_{i=1}^{\infty} f_{i}\right\} \supset\left\{\sum_{i=1}^{\infty} \mu\left(g_{i}\right) ; g_{i} \in H_{0}, g \leq \sum_{i=1}^{\infty} g_{i}\right\}
$$

We can see that $\mu^{*}(f)$ is the infimum of the larger set, so it is also a lower bound of the smaller set. Therefore $\mu^{*}(f) \leq \mu^{*}(g)$.
(3) We prove $\mu^{*}(f+g) \leq \mu^{*}(f)+\mu^{*}(g)$. Let $f, g \in \mathcal{F}, f_{i}, g_{i} \in H_{0}(i=1,2, \ldots)$, and $f \leq \sum_{i=1}^{\infty} f_{i}, g \leq \sum_{i=1}^{\infty} g_{i}$.

If $\mu^{*}(f)=\infty$ or $\mu^{*}(g)=\infty$ then the inequality holds.
Let $\mu^{*}(f) \neq \infty$ and $\mu^{*}(g) \neq \infty$. Then:

$$
f+g \leq \sum_{i=1}^{\infty} f_{i}+\sum_{i=1}^{\infty} g_{i}
$$

and

$$
\mu^{*}(f+g) \leq \sum_{i=1}^{\infty} \mu\left(f_{i}\right)+\sum_{i=1}^{\infty} \mu\left(g_{i}\right) .
$$

Now we fix for a moment $\sum_{i=1}^{\infty} f_{i}$. Since the preceding inequality holds for any $\sum_{i=1}^{\infty} g_{i}$, we obtain:

$$
\mu^{*}(f+g)-\sum_{i=1}^{\infty} \mu\left(f_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(g_{i}\right),
$$

hence:

$$
\mu^{*}(f+g)-\sum_{i=1}^{\infty} \mu\left(f_{i}\right) \leq \mu^{*}(g)
$$

Similarly the relation:

$$
\mu^{*}(f+g)-\mu^{*}(g) \leq \sum_{i=1}^{\infty} \mu\left(f_{i}\right)
$$

for any f_{i} implies:

$$
\mu^{*}(f+g)-\mu^{*}(g) \leq \mu^{*}(f)
$$

This completes the proof.

Proposition 3.6. For any $f \in \mathcal{F}$ holds:

$$
\mu^{*}(f)=\bigwedge\left\{\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right) ; g_{n} \in H_{0}, g_{n} \leq g_{n+1}, f \leq \bigvee_{n=1}^{\infty} g_{n}\right\}
$$

Proof.
(1) Consider any $g_{n} \in H_{0}, g_{n} \leq g_{n+1}, f \leq \bigvee_{n=1}^{\infty} g_{n}(n=1,2, \ldots)$. Since $g_{n} \leq g_{n+1}$, then $g_{n+1}-\left(g_{n+1} \wedge g_{n}\right)=g_{n+1}-g_{n}$.

Put $f_{1}=g_{1}, f_{2}=g_{2}-g_{1}, f_{3}=g_{3}-g_{2}, \ldots$ Then $\sum_{i=1}^{n} f_{i}=g_{n}$ and $\sum_{i=1}^{n} \mu\left(f_{i}\right)=\mu\left(g_{n}\right)$. Therefore:

$$
\mu^{*}(f)=\bigwedge\left\{\sum_{i=1}^{\infty} \mu\left(f_{i}\right)\right\} \leq \sum_{i=1}^{\infty} \mu\left(f_{i}\right)=\bigvee_{n=1}^{\infty} \sum_{i=1}^{n} \mu\left(f_{i}\right)=\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)
$$

and

$$
\mu^{*}(f) \leq \bigwedge\left\{\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)\right\}
$$

(2) On the other hand consider any sequence $\left(f_{i}\right)_{i=1}^{\infty}, f_{i} \in H_{0}, f \leq \sum_{i=1}^{\infty} f_{i}$. Put $g_{n}=\sum_{i=1}^{n} f_{i}$. Then $g_{n} \in H_{0}, g_{n} \leq g_{n+1}$ and $\bigvee_{n=1}^{\infty} g_{n}=\sum_{i=1}^{\infty} f_{i} \geq f$.

Therefore:

$$
\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)=\bigvee_{n=1}^{\infty} \mu\left(\sum_{i=1}^{n} f_{i}\right)=\bigvee_{n=1}^{\infty} \sum_{i=1}^{n} \mu\left(f_{i}\right)=\sum_{i=1}^{\infty} \mu\left(f_{i}\right)
$$

and

$$
\bigwedge\left\{\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right) ; g_{n} \in H_{0}, g_{n} \leq g_{n+1}, f \leq \bigvee_{n=1}^{\infty} g_{n}\right\} \leq \sum_{i=1}^{\infty} \mu\left(f_{i}\right)
$$

From the last inequality we get:

$$
\bigwedge\left\{\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right) ; g_{n} \in H_{0}, g_{n} \leq g_{n+1}, f \leq \bigvee_{n=1}^{\infty} g_{n}\right\} \leq \mu^{*}(f)
$$

This completes the proof.
Proposition 3.7. Denote by H_{0}^{+}the set of all functions $g=\bigvee_{n=1}^{\infty} g_{n}$ such that $g_{n} \in H_{0}$, $g_{n} \leq g_{n+1}(n=1,2, \ldots)$. The value $\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)$ does not depends on the sequence $\left(g_{n}\right)_{n=1}^{\infty}$ but only on the function g.

Proof. Let $g_{n} \in H_{0}, g_{n} \leq g_{n+1}, g_{n} \nearrow g$ and $h_{n} \in H_{0}, h_{n} \leq h_{n+1}, h_{n} \nearrow g$ then:

$$
\begin{gathered}
\bigvee_{n=1}^{\infty}\left(g_{n} \wedge h_{m}\right)=\left(\bigvee_{n=1}^{\infty} g_{n}\right) \wedge h_{m} \\
g_{n} \wedge h_{m} \nearrow g \wedge h_{m}=h_{m}
\end{gathered}
$$

and

$$
\mu\left(g_{n} \wedge h_{m}\right) \nearrow \mu\left(h_{m}\right)
$$

For each $m \in N$ holds:

$$
\mu\left(h_{m}\right)=\bigvee_{n=1}^{\infty} \mu\left(g_{n} \wedge h_{m}\right) \leq \bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)
$$

and

$$
\bigvee_{m=1}^{\infty} \mu\left(h_{m}\right) \leq \bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)
$$

Similarly can be proved opposite inequality.
We proved that the value $\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)$ does not depends on the sequence $\left(g_{n}\right)_{n=1}^{\infty}$ but only on the function g.

Remark 3.8. For any $f \in \mathcal{F}$ there exist a function $g \in H_{0}^{+}$such that $g \geq f$.
Remark 3.9. Because $\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)$ does not depends on the sequence $\left(g_{n}\right)_{n=1}^{\infty}$ but only on the function g, we can define $\mu^{+}: H_{0}^{+} \rightarrow G$ by the formula:

$$
\mu^{+}(g)=\bigvee_{n=1}^{\infty} \mu\left(g_{n}\right)
$$

Using this notation we can reformulate Proposition 3.6 by the following way:

$$
\mu^{*}(f)=\bigwedge\left\{\mu^{+}(g) ; g \in H_{0}^{+}, g \geq f\right\} .
$$

4 Choquet lemma

The Choquet lemma states that $f_{n} \nearrow f$ implies $\mu^{*}\left(f_{n}\right) \nearrow \mu^{*}(f)$. Since in general ℓ-groups cannot be used the usual ε-technique we shall need following structure:

Definition 4.1. Dedekind σ-complete ℓ-group G is called to be weakly σ-distributive if for any bounded double sequence $\left(a_{i, j}\right)$ such that $a_{i, j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$ it is

$$
\bigwedge_{\varphi \in N^{N}} \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}=0
$$

Proposition 4.2. If G is a Dedekind complete ℓ-group of countable type then for any real nonnegative function f there exists a bounded double sequence $a_{i, j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$ such that for any $\varphi: N \rightarrow N$ there exists $g \in H_{0}^{+}, f \leq g$ such that:

$$
\mu^{*}(f)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{+}(g)
$$

Proof. Since G is an ℓ-group of countable type, by Remark 3.9 there exists a sequence $\left(h_{n}\right)_{n=1}^{\infty}$ of elements of H_{0}^{+}such that $f \leq h_{n}$ and

$$
\mu^{*}(f)=\bigwedge_{n=1}^{\infty} \mu^{+}\left(h_{n}\right) .
$$

Put $g_{n}=\bigwedge_{i=1}^{n} h_{i}$. Then $f \leq g_{n}, g_{n} \in H_{0}^{+}, g_{n+1} \leq g_{n}$ and:

$$
\mu^{*}(f)=\bigwedge_{n=1}^{\infty} \mu^{+}\left(g_{n}\right)
$$

Define $a_{i, j}=\mu^{+}\left(g_{j}\right)-\mu^{*}(f), j \rightarrow \infty, i=1,2, \ldots$.

Then $a_{i j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$. Let $\varphi: N \rightarrow N$. Then:

$$
\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq a_{i, \varphi(i)}=\mu^{+}\left(g_{\varphi(i)}\right)-\mu^{*}(f)
$$

We may put $g=g_{\varphi(i)}$ and we obtain the inequality:

$$
\mu^{*}(f)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{+}(g)
$$

This completes the proof.

Theorem 4.3. Let G be a Dedekind complete weakly σ-distributive ℓ-group of countable type. Let $f_{n}, f \in \mathcal{F}, f_{n} \nearrow f$. Then $\mu^{*}\left(f_{n}\right) \nearrow \mu^{*}(f)$.

Proof. We shall use two properties of μ^{+}which are consequences of analogous properties of μ :
(1) $\mu^{+}\left(g_{1}\right)+\mu^{+}\left(g_{2}\right)=\mu^{+}\left(g_{1} \vee g_{2}\right)+\mu^{+}\left(g_{1} \wedge g_{2}\right)$ for any $g_{1}, g_{2} \in H_{0}^{+}$;
(2) if $h_{n} \nearrow h, h_{n} \in H_{0}^{+}$, then also $h \in H_{0}^{+}$and $\mu^{+}(h)=\bigvee_{n=1}^{\infty} \mu^{+}\left(h_{n}\right)$.

Let $f_{n}, f \in \mathcal{F}, f_{n} \nearrow f$. Evidently $\mu^{*}\left(f_{n}\right) \leq \mu^{*}(f)$ and the equality holds if $\bigvee_{n=1}^{\infty} \mu^{*}\left(f_{n}\right)=\infty$. Therefore we can assume that $\bigvee_{n=1}^{\infty} \mu^{*}\left(f_{n}\right) \in G^{+}$.

By Proposition 4.2 for any $n \in N$ there exists a bounded sequence $\left(a_{n, i, j}\right)_{i, j}$ such that for any $\varphi: N \rightarrow N$ there exists $g_{n} \in H_{0}^{+}, f_{n} \leq g_{n}$ such that:

$$
\mu^{*}\left(f_{n}\right)+\bigvee_{i=1}^{\infty} a_{n, i, \varphi(n+i)} \geq \mu^{+}\left(g_{n}\right)
$$

By the Fremlin theorem (see [8], Theorem 3.2.3) there exists a bounded double sequence $\left(a_{i, j}\right)_{i, j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$ and such that

$$
a \wedge\left(\sum_{k=1}^{n} \bigvee_{i=1}^{\infty} a_{k, i, \varphi(i+k)}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}
$$

for each $k \in N$.
By Remark 3.8 for any $f \in \mathcal{F}$ there exist such $g \in H_{0}^{+}$that $g \geq f$.
Put $h_{n}=\left(\bigvee_{i=1}^{n} g_{i}\right) \wedge g$. Then $h_{n} \in H_{0}^{+}, h_{n} \leq h_{n+1}$ and

$$
f=\bigvee_{n=1}^{\infty} f_{n} \leq \bigvee_{n=1}^{\infty} h_{n}, \quad\left(\bigvee_{n=1}^{\infty} h_{n}=\left(\bigvee_{i=1}^{\infty} g_{i}\right) \wedge g\right)
$$

Therefore:

$$
\begin{gathered}
\mu^{*}\left(f_{2}\right)+\bigvee_{i=1}^{\infty} a_{2, i, \varphi(2+i)} \geq \mu^{+}\left(g_{2}\right)= \\
=\mu^{+}\left(g_{1} \vee g_{2}\right)+\mu^{+}\left(g_{1} \wedge g_{2}\right)-\mu^{+}\left(g_{1}\right) \geq \\
\geq \mu^{+}\left(\left(g_{1} \vee g_{2}\right) \wedge g\right)+\mu^{*}\left(f_{1} \wedge f_{2}\right)-\mu^{*}\left(f_{1}\right)-\bigvee_{i=1}^{\infty} a_{1, i, \varphi(1+i)}= \\
=\mu^{+}\left(h_{2}\right)+\mu^{*}\left(f_{1}\right)-\mu^{*}\left(f_{1}\right)-\bigvee_{i=1}^{\infty} a_{1, i, \varphi(1+i)}= \\
=\mu^{+}\left(h_{2}\right)-\bigvee_{i=1}^{\infty} a_{1, i, \varphi(1+i)} .
\end{gathered}
$$

Hence:

$$
\mu^{+}\left(h_{2}\right)-\mu^{*}\left(f_{2}\right) \leq \bigvee_{i=1}^{\infty} a_{1, i, \varphi(1+i)}+\bigvee_{i=1}^{\infty} a_{2, i, \varphi(2+i)}
$$

and similarly:

$$
\mu^{+}\left(h_{n}\right)-\mu^{*}\left(f_{n}\right) \leq \sum_{k=1}^{n} \bigvee_{i=1}^{\infty} a_{k, i, \varphi(k+i)} .
$$

At the same time:

$$
\mu^{+}\left(h_{n}\right)-\mu^{*}\left(f_{n}\right) \leq \mu^{+}\left(h_{n}\right) \leq \mu^{+}(g) .
$$

Therefore:

$$
\mu^{+}\left(h_{n}\right)-\mu^{*}\left(f_{n}\right) \leq \mu^{+}(g) \wedge \sum_{k=1}^{n} \bigvee_{i=1}^{\infty} a_{k, i, \varphi(k+i)}
$$

Let $a=\mu^{+}(g)$. Then we can use Fremlin theorem and it holds:

$$
\mu^{+}\left(h_{n}\right)-\mu^{*}\left(f_{n}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}
$$

Therefore

$$
\bigvee_{n=1}^{\infty} \mu^{*}\left(f_{n}\right)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \bigvee_{n=1}^{\infty} \mu^{+}\left(h_{n}\right)=\mu^{+}\left(\bigvee_{n=1}^{\infty} h_{n}\right)
$$

But by the Remark 3.9:

$$
\mu^{+}\left(\bigvee_{n=1}^{\infty} h_{n}\right) \geq \mu^{*}(f)
$$

Hence:

$$
\bigvee_{n=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{*}(f)-\bigvee_{n=1}^{\infty} \mu^{*}\left(f_{n}\right)
$$

holds for any $\varphi: N \rightarrow N$ and G is weakly σ-distributive ℓ-group, therefore we obtain:

$$
0=\bigwedge_{\varphi} \bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{*}(f)-\bigvee_{n=1}^{\infty} \mu^{*}\left(f_{n}\right)
$$

This completes the proof.

5 Measure extension theorem

Theorem 5.1. Let G be a Dedekind complete weakly σ-distributive ℓ-group of countable type. Let $\mathcal{M} \subset \mathcal{F}$ be the family of all μ^{*}-measurable elements. Then \mathcal{M} is a σ-complete lattice, $H_{0} \subset \mathcal{M}$, and the restriction $\mu^{*} \mid \mathcal{M}$ is a measure.

Proof. First we show that \mathcal{M} is a σ-complete lattice.
We have already proved, that \mathcal{M} is a lattice. So we have to show, that for any sequence $\left(f_{n}\right)_{n=1}^{\infty}$ of μ^{*}-measurable elements the functions $f=\bigvee_{n=1}^{\infty} f_{n}$ and $f^{\prime}=\bigwedge_{n=1}^{\infty} f_{n}$ are also μ^{*}-measurable elements. Put $g_{n}=\bigvee_{i=1}^{n} f_{i}$ for each $n \in N$. Then $g_{n} \leq g_{n+1}$ and $\bigvee_{n=1}^{\infty} g_{n}=\bigvee_{n=1}^{\infty} f_{n}=f$ therefore $g_{n} \nearrow f$. Since g_{n} is μ^{*}-measurable for each $n \in N$ then for each $h \in \mathcal{F}$ holds:

$$
\mu^{*}(h)=\mu^{*}\left(h \wedge g_{n}\right)+\mu^{*}\left(h-h \wedge g_{n}\right) .
$$

Since $f \geq g_{n}$ then $h \wedge f \geq h \wedge g_{n}$ and $h-h \wedge g_{n} \geq h-h \wedge f$. Therefore:

$$
\mu^{*}\left(h-h \wedge g_{n}\right) \geq \mu^{*}(h-h \wedge f)
$$

and

$$
\mu^{*}(h) \geq \mu^{*}\left(h \wedge g_{n}\right)+\mu^{*}(h-h \wedge f) .
$$

Since $g_{n} \nearrow f$ also $h \wedge g_{n} \nearrow h \wedge f$ by Choquet lemma we obtain:

$$
\lim _{n \rightarrow \infty} \mu^{*}\left(h \wedge g_{n}\right)=\mu^{*}(h \wedge f) .
$$

Therefore:

$$
\mu^{*}(h) \geq \mu^{*}(h \wedge f)+\mu^{*}(h-h \wedge f)
$$

Opposite inequality follows from subadditivity of outer measure μ^{*}.
This proves that f is also the μ^{*}-measurable element.
Now we show that $f^{\prime}=\bigwedge_{n=1}^{\infty} f_{n}$ is a μ^{*}-measurable element.
Let $f^{\prime}=\bigwedge_{n=1}^{\infty} f_{n}$. Put $g_{n}^{\prime}=\bigwedge_{i=1}^{n} f_{i}$ for each $n \in N$. Then $g_{n}^{\prime} \geq g_{n+1}^{\prime}$ and $\bigwedge_{n=1}^{\infty} g_{n}^{\prime}=\bigwedge_{n=1}^{\infty} f_{n}=f^{\prime}$ therefore $g_{n}^{\prime} \searrow f^{n=1}$. Since g_{n}^{\prime} is μ^{*}-measurable for each $n \in N$ then for each $h \in \mathcal{M}$ it holds:

$$
\mu^{*}(h)=\mu^{*}\left(h \wedge g_{n}^{\prime}\right)+\mu^{*}\left(h-h \wedge g_{n}^{\prime}\right) .
$$

Since $g_{n}^{\prime} \geq f^{\prime},(n=1,2, \ldots)$ then $h \wedge g_{n}^{\prime} \geq h \wedge f^{\prime}$ and

$$
\mu^{*}\left(h \wedge g_{n}^{\prime}\right) \geq \mu^{*}\left(h \wedge f^{\prime}\right)
$$

Therefore:

$$
\mu^{*}(h) \geq \mu^{*}\left(h \wedge f^{\prime}\right)+\mu^{*}\left(h-h \wedge g_{n}^{\prime}\right) .
$$

Since $g_{n}^{\prime} \searrow f$ then $h \wedge g_{n}^{\prime} \searrow h \wedge f^{\prime}$ and $h-h \wedge g_{n}^{\prime} \nearrow h-h \wedge f^{\prime}$ then by the Choquet lemma we obtain:

$$
\lim _{n \rightarrow \infty} \mu^{*}\left(h-h \wedge g_{n}^{\prime}\right)=\mu^{*}\left(h-h \wedge f^{\prime}\right)
$$

therefore:

$$
\mu^{*}(h) \geq \mu^{*}\left(h \wedge f^{\prime}\right)+\mu^{*}\left(h-h \wedge f^{\prime}\right) .
$$

Opposite inequality follows from subadditivity of the outer measure μ^{*}.
This proves that f^{\prime} is the μ^{*}-measurable elements hence the lattice \mathcal{M} is a σ-complete lattice.

Secondly, we show that $H_{0} \subset \mathcal{M}$.
We already proved that for any $f \in \mathcal{F}$ it holds:

$$
\mu^{*}(f)=\bigwedge\left\{\mu^{+}(g) ; g \in H_{0}^{+}, f \leq g\right\} .
$$

Since μ^{*} is subadditive than for any $f \in \mathcal{F}$ and $h \in H_{0}$ it holds:

$$
\mu^{*}(f) \leq \mu^{*}(f \wedge h)+\mu^{*}(f-f \wedge h)
$$

By the Proposition 4.2 for any real non-negative function f there exists a bounded double sequence $a_{i, j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$ such that for any $\varphi: N \rightarrow N$ there exists $g \in H_{0}^{+}$, $f \leq g$ and that:

$$
\mu^{*}(f)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{+}(g)
$$

But:

$$
\begin{gathered}
\mu^{+}(g)=\lim _{n \rightarrow \infty} \mu\left(g_{n}\right)=\lim _{n \rightarrow \infty}\left[\mu\left(g_{n} \wedge h\right)+\mu\left(g_{n}-g_{n} \wedge h\right)\right]= \\
=\lim _{n \rightarrow \infty} \mu\left(g_{n} \wedge h\right)+\lim _{n \rightarrow \infty} \mu\left(g_{n}-g_{n} \wedge h\right)=\mu^{+}(g \wedge h)+\mu^{+}(g-g \wedge h) .
\end{gathered}
$$

Now we show that:

$$
\mu^{+}(g \wedge h)+\mu^{+}(g-g \wedge h) \geq \mu^{*}(f \wedge h)+\mu^{*}(f-f \wedge h)
$$

Since $g \geq f$ then $g \wedge h \geq f \wedge h$ and $\mu^{+}(g \wedge h) \geq \mu^{*}(f \wedge h)$.
Let us use following notation:

$$
(g-h)^{+}=0 \vee(g-h) .
$$

If $(f-h)^{+}=0$ and $g \geq f$ then $(g-h)^{+} \geq(f-h)^{+}$. If $(f-h)^{+}(x)=f(x)-h(x)>0$ then

$$
(g-h)^{+}(x)=g(x)-h(x) \geq f(x)-h(x)=(f-h)^{+}(x) .
$$

Therefore:

$$
(g-h)^{+} \geq(f-h)^{+}
$$

and then:

$$
\begin{aligned}
0 \vee(g-h) & \geq 0 \vee(f-h), \\
(g-g) \vee(g-h) & \geq(f-f) \vee(f-h), \\
g-(g \wedge h) & \geq f-(f \wedge h) .
\end{aligned}
$$

Then also:

$$
\mu^{+}(g-g \wedge h) \geq \mu^{*}(f-f \wedge h)
$$

Hence:

$$
\mu^{*}(f)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{*}(f \wedge h)+\mu^{*}(f-f \wedge h)
$$

for each $\varphi: N \rightarrow N$. Therefore:

$$
\mu^{*}(f)=\mu^{*}(f \wedge h)+\mu^{*}(f-f \wedge h)
$$

for each $h \in H_{0}$.

Thirdly, we show that $\mu^{*} \mid \mathcal{M}$ is a measure.
Because of the Choquet lemma it is sufficient to prove that $\mu^{*} \mid \mathcal{M}$ is an additive. Let $g, h \in \mathcal{M}$. Then it holds:

$$
\mu^{*}(f)=\mu^{*}(f \wedge g)+\mu^{*}(f-f \wedge g)
$$

Put $f=g+h$ then:

$$
\mu^{*}(g+h)=\mu^{*}((g+h) \wedge g)+\mu^{*}((g+h)-((g+h) \wedge g))=\mu^{*}(g)+\mu^{*}(h) .
$$

This completes the proof.

Theorem 5.2. Let $\sigma\left(H_{0}\right)$ be a σ-complete lattice generated by H_{0}. Then $\sigma\left(H_{0}\right)$ is a σ-complete lattice closed under the operation + and the operation $(f, g) \mapsto f-f \wedge g$.

Proof.

1. Let $f \in H_{0}$ and fix it for a moment. Define:

$$
A=\left\{g ; f+g \in \sigma\left(H_{0}\right)\right\} .
$$

Then $H_{0} \subset A$ and A is a σ-complete lattice. Therefore also $\sigma\left(H_{0}\right) \subset A$.
2. Now we take $g \in \sigma\left(H_{0}\right)$ fixed and denote:

$$
B=\left\{f ; f+g \in \sigma\left(H_{0}\right)\right\} .
$$

We can see that for any $f \in H_{0}$ it holds $f+g \in \sigma\left(H_{0}\right)$. Therefore $H_{0} \subset B$. Since B is a σ-complete lattice then also $\sigma\left(H_{0}\right) \subset B$.
3. Let $f \in H_{0}$ and fix it for a moment. Define:

$$
C=\left\{g ; f-f \wedge g \in \sigma\left(H_{0}\right)\right\} .
$$

Then $H_{0} \subset C$ and C is a σ-complete lattice. Therefore also $\sigma\left(H_{0}\right) \subset C$.
4. Now we take $g \in \sigma\left(H_{0}\right)$ fixed and denote:

$$
D=\left\{f ; f-f \wedge g \in \sigma\left(H_{0}\right)\right\} .
$$

We can see that for any $f \in H_{0}$ it holds $f-f \wedge g \in \sigma\left(H_{0}\right)$. Therefore $H_{0} \subset D$. Since D is a σ-complete lattice then also $\sigma\left(H_{0}\right) \subset D$.

We have proved that for any $f, g \in \sigma\left(H_{0}\right)$ also $f+g, f-f \wedge g \in \sigma\left(H_{0}\right)$.

Theorem 5.3. $\mu^{*} \mid \sigma\left(H_{0}\right)=\bar{\mu}$ is a measure on the σ-complete lattice $\sigma\left(H_{0}\right)$.
Proof. Because $H_{0} \subset \mathcal{M}$ and the set \mathcal{M} of all μ^{*}-measurable elements is σ-complete, then $\sigma\left(H_{0}\right) \subset \mathcal{M}$ and therefore $\mu^{*} \mid \sigma\left(H_{0}\right)=\bar{\mu}$ is a restriction of the measure $\mu^{*} \mid \mathcal{M}$ on the lattice $\sigma\left(H_{0}\right)$.

Theorem 5.4. There exists exactly one measure $\bar{\mu}$ on $\sigma\left(H_{0}\right)$ that is an extension of $\mu: H_{0} \rightarrow G$.
Proof. Let $\nu: \sigma\left(H_{0}\right) \rightarrow G^{*}$ be a measure which extending μ. Put

$$
\mathcal{K}=\left\{f \in \sigma\left(H_{0}\right) ; \nu(f)=\bar{\mu}(f)\right\}
$$

Then $H_{0} \subset \mathcal{K}$ and \mathcal{K} is σ-complete lattice, therefore $\sigma\left(H_{0}\right) \subset \mathcal{K}$. Therefore for any function $f \in \sigma\left(H_{0}\right)$ holds also $f \in \mathcal{K}$ an therefore $\nu(f)=\bar{\mu}(f)$ for each $f \in \sigma\left(H_{0}\right)$.

Acknowledgements

This paper was supported by Grant VEGA 1/2002/05.

References

[1] Atanassov, K., Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg, 1999.
[2] Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
[3] Carathéodory, C., Vorelsungen über reele Funktionen. Leipzig, Berlin 1927.
[4] Cignoli, R., I. M. L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library, Vol. 7, Kluwer, Dordrecht, 2000.
[5] Fremlin, D. H., A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc., Vol. 11, 1975, 276-284.
[6] Fremlin, D. H., Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, 1974.
[7] Michalíková, A., V. Valenčáková, Outer measure on \mathcal{F}-sets, In: Proc. of 3rd International IEEE Conference Intelligent Systems, London, September 2006, 728-729.
[8] Michalíková, A., On the extension of Riesz space valued operators. Journal of Electrical Engineering, Vol. 57, 2006, No. 7/s, 89-91.
[9] Mundici, D., Interpretation of AFC*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal., Vol. 65, 1986, 15-63.
[10] Riečan, B., Carathéodory measurability revisites. Tatra Moutnains Math. Publ., Vol. 34, 2006, No. 2, 321-332.
[11] Riečan, B., On measures and integrals with values in ordered groups. Math. Slovaca, Vol. 33, 1983, 153-163.
[12] Riečan, B., Analysis of Fuzzy Logic Models. In: Intelligent Systems (V. M. Koleshko ed.), INTECH 2012, 219-240.
[13] Riečan, B., T. Neubrunn, Integral, Measure, and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997.
[14] Wright. J. D. M., Stone-algebra-valued measures for vector lattices. Ann. Inst. Fourier (Grenoble), Vol. 21, 1971, 65-85.

