10th Int. Workshop on IFSs, Banská Bystrica, 29 Sept. 2014 Notes on Intuitionistic Fuzzy Sets ISSN 1310–4926 Vol. 20, 2014, No. 4, 19–31

On the extension of group-valued measures

Alžbeta Michalíková

Department of Mathematics, Faculty of Natural Sciences Matej Bel University Tajovského 40, SK - 974 01 Banská Bystrica, Slovakia e-mail: alzbeta.michalikova@umb.sk

Abstract: Since any space of IF-sets can be embedded to an MV-algebra ([12]), and any MV-algebra can be presented as an interval in a lattice ordered group ([9]), it is interesting to study measures with respect to 1-groups. In this paper the group-valued outer measures are studied. The main result is the Choquet lemma concerning lower continuity of the induced outer measure. The result is applied to the group-valued measure extension theorem.

Keywords: Measure, G-valued outer measure.

AMS Classification: 03E72.

1 Introduction

In [10] the measure extension theorem for group-valued measure was proved. The considered domain was a family of subsets of a given set. The notion of group-valued outer measure defined on a family of functions has been introduced in [7] where it was proved that the measurable elements form a lattice. The theory has been development further in [8]. In this paper we present a complete theory of group-valued outer measures on the families of functions. In *Section 2* the family of measurable elements is investigated, in *Section 3* the notion of induced outer measure is introduced. *Section 4* contains the proof of Choquet lemma. The obtained results are applied in *Section 5* for the formulation and the proof of G-valued extension theorem.

2 Outer measure and μ^* -measurable elements

Let (Ω, S) be a measurable space, \mathcal{F} be the set of all non-negative measurable functions. Let G be a complete ℓ -group, i.e. a structure $(G, +, \leq)$ such that (G, +) is an Abelian group, (G, \leq)

is a complete lattice (i.e. any upper bounded subset of G has the supremum) and $a \le b$ implies $a + c \le b + c$ for any $c \in G$. Let 0 be the neutral element of G (i.e. a + 0 = a for any $a \in G$), $G^+ = \{a \in G; a \ge 0\}$. Denote by ∞ an ideal element and

$$G^* = G^+ \cup \{\infty\},\$$

where $a + \infty = \infty + a = \infty + \infty = \infty$ for any $a \in G$ and $a \leq \infty, \infty \leq \infty$ for any $a \in G$.

Definition 2.1. A mapping $\mu^* : \mathcal{F} \to G^*$ is called an outer measure if it is satisfying the following conditions:

- 1. $\mu^*(0) = 0$,
- 2. $f \leq g$ implies $\mu^*(f) \leq \mu^*(g)$,
- 3. $\mu^*(f+g) \le \mu^*(f) + \mu^*(g)$ for each $f, g \in \mathcal{F}$.

Definition 2.2. Let $\mu^* : \mathcal{F} \to G^*$ be an outer measure. A function $f \in \mathcal{F}$ is called μ^* -measurable element if it holds:

$$\mu^*(h) = \mu^*(h \wedge f) + \mu^*(h - (h \wedge f))$$

for each $h \in \mathcal{F}$.

Remark 2.3. *In this paper the operations* \land *and* \lor *take precedence over the operations* +, -, *thus the notation* $(h - h \land f)$ *denotes* $(h - (h \land f))$.

Theorem 2.4. Denote by \mathcal{M} the set of all μ^* -measurable elements of \mathcal{F} . Then \mathcal{M} form a lattice.

Proof.

(*i*) We show that if f, g are the μ^* -measurable elements, then $f \wedge g$ is also the μ^* -measurable element. Because μ^* is subadditive it is sufficient to show an inequality:

$$\mu^*(h) \ge \mu^*(h \wedge f \wedge g) + \mu^*(h - h \wedge f \wedge g).$$

Let f, g be the μ^* -measurable elements. Then for any $h \in \mathcal{F}$ it holds:

$$\mu^*(h) = \mu^*(h \wedge f) + \mu^*(h - h \wedge f)$$

and $h \wedge f \in \mathcal{F}$ therefore:

$$\mu^*(h \wedge f) = \mu^*(h \wedge f \wedge g) + \mu^*(h \wedge f - h \wedge f \wedge g).$$

Then:

$$\mu^*(h) = \mu^*(h \wedge f \wedge g) + \mu^*(h \wedge f - h \wedge f \wedge g) + \mu^*(h - h \wedge f) \ge$$
$$\ge \mu^*(h \wedge f \wedge g) + \mu^*(h \wedge f - h \wedge f \wedge g + h - h \wedge f) =$$
$$= \mu^*(h \wedge f \wedge g) + \mu^*(h - h \wedge f \wedge g).$$

It proves that $f \wedge g$ is the μ^* -measurable element.

(*ii*) We show that if f, g are the μ^* -measurable elements, then $f \vee g$ is also the μ^* -measurable element. Since $h - h \wedge f = h \vee f - f$ we have:

$$\mu^*(h - h \wedge f) = \mu^*(h \vee f - f).$$

Therefore if f is μ^* -measurable then for any $h \in \mathcal{F}$:

$$\mu^*(h) - \mu^*(h \land f) = \mu^*(h \lor f) - \mu^*(f)$$

or

$$\mu^*(h) + \mu^*(f) = \mu^*(h \wedge f) + \mu^*(h \vee f).$$

Let $f, g, f \wedge g$ be the μ^* -measurable elements, then:

$$\mu^*(h \wedge f \wedge g) = \mu^*((h \wedge f) \wedge (h \wedge g)) =$$
$$= \mu^*(h \wedge f) + \mu^*(h \wedge g) - \mu^*(h \wedge (f \vee g))$$

and also:

$$\mu^{*}(h - h \wedge f \wedge g) = \mu^{*}((h - h \wedge f) \vee (h - h \wedge g)) =$$

= $\mu^{*}(h - h \wedge f) + \mu^{*}(h - h \wedge g) - \mu^{*}((h - h \wedge f) \wedge (h - h \wedge g))$
= $\mu^{*}(h - h \wedge f) + \mu^{*}(h - h \wedge g) - \mu^{*}(h - h \wedge (f \vee g)).$

Therefore:

$$\mu^{*}(h \wedge (f \vee g)) + \mu^{*}(h - h \wedge (f \vee g)) =$$

= $\mu^{*}(h \wedge f) + \mu^{*}(h - h \wedge f) + \mu^{*}(h \wedge g) + \mu^{*}(h - h \wedge g) -$
 $-\mu^{*}(h \wedge f \wedge g) - \mu^{*}(h - h \wedge f \wedge g) =$
= $\mu^{*}(h) + \mu^{*}(h) - \mu^{*}(h) = \mu^{*}(h).$

It proves that $f \lor g$ is the μ^* -measurable element and all μ^* -measurable elements of \mathcal{F} form a lattice.

3 Induced outer measure

Definition 3.1. Let H_0 be a set of non-negative real functions satisfying the following conditions:

- 1. if $f, g \in H_0$ then $f \lor g \in H_0$,
- 2. *if* $f, g \in H_0$ *then* $f \land g \in H_0$,
- 3. if $f, g \in H_0$ then $f + g \in H_0$,
- 4. if $f, g \in H_0$ then $f f \land g \in H_0$,

Assume that to any $f \in \mathcal{F}$ there exist the functions $f_i \in H_0$ (i = 1, 2, ...) such that $\sum_{i=1}^{\infty} f_i \ge f$.

Definition 3.2. A *G*-valued measure on H_0 is a function μ such that:

1. $\mu(0) = 0$

2. *if*
$$f, f_i \in H_0$$
 $(i = 1, 2, ...)$ and $f = \sum_{i=1}^{\infty} f_i$ then $\mu(f) = \sum_{i=1}^{\infty} \mu(f_i)$.

In the group-valued case we shall need the following structure:

Definition 3.3. Dedekind complete ℓ -group G is called to be of countable type, if to any bounded set $A \subset G$ there exists such a countable subset $B \subset A$ that

$$\bigwedge A = \bigwedge B.$$

Definition 3.4. Let G be a Dedekind complete ℓ -group of countable type. Let μ be a G-valued measure defined on H_0 . Then for any $f \in \mathcal{F}$ we define:

$$\mu^*(f) = \bigwedge \left\{ \sum_{i=1}^{\infty} \mu(f_i); \ f_i \in H_0, f \le \sum_{i=1}^{\infty} f_i \right\}.$$

Theorem 3.5. *The function* μ^* *is an outer measure.*

Proof.

(1) We prove $\mu^*(0) = 0$. Evidently:

$$0 \le \mu^*(0) \le \mu(0) + \mu(0) + \dots = 0,$$

hence $\mu^*(0) = 0$.

(2) We prove that $f \leq g$ implies $\mu^*(f) \leq \mu^*(g)$.

Let $f \leq g$. By comparing the sets we get:

$$\left\{\sum_{i=1}^{\infty}\mu(f_i); f_i \in H_0, f \le \sum_{i=1}^{\infty}f_i\right\} \supset \left\{\sum_{i=1}^{\infty}\mu(g_i); g_i \in H_0, g \le \sum_{i=1}^{\infty}g_i\right\}.$$

We can see that $\mu^*(f)$ is the infimum of the larger set, so it is also a lower bound of the smaller set. Therefore $\mu^*(f) \le \mu^*(g)$.

(3) We prove $\mu^*(f+g) \leq \mu^*(f) + \mu^*(g)$. Let $f, g \in \mathcal{F}, f_i, g_i \in H_0$ (i = 1, 2, ...), and $f \leq \sum_{i=1}^{\infty} f_i, g \leq \sum_{i=1}^{\infty} g_i$. If $\mu^*(f) = \infty$ or $\mu^*(g) = \infty$ then the inequality holds. Let $\mu^*(f) \neq \infty$ and $\mu^*(g) \neq \infty$. Then:

$$f + g \le \sum_{i=1}^{\infty} f_i + \sum_{i=1}^{\infty} g_i$$

and

$$\mu^*(f+g) \le \sum_{i=1}^{\infty} \mu(f_i) + \sum_{i=1}^{\infty} \mu(g_i).$$

Now we fix for a moment $\sum_{i=1}^{\infty} f_i$. Since the preceding inequality holds for any $\sum_{i=1}^{\infty} g_i$, we obtain:

$$\mu^*(f+g) - \sum_{i=1}^{\infty} \mu(f_i) \le \sum_{i=1}^{\infty} \mu(g_i)$$

hence:

$$\mu^*(f+g) - \sum_{i=1}^{\infty} \mu(f_i) \le \mu^*(g).$$

Similarly the relation:

$$\mu^*(f+g) - \mu^*(g) \le \sum_{i=1}^{\infty} \mu(f_i)$$

for any f_i implies:

$$\mu^*(f+g) - \mu^*(g) \le \mu^*(f).$$

This completes the proof.

Proposition 3.6. *For any* $f \in \mathcal{F}$ *holds:*

$$\mu^*(f) = \bigwedge \{ \bigvee_{n=1}^{\infty} \mu(g_n); \ g_n \in H_0, \ g_n \le g_{n+1}, \ f \le \bigvee_{n=1}^{\infty} g_n \}$$

Proof.

(1) Consider any $g_n \in H_0$, $g_n \leq g_{n+1}$, $f \leq \bigvee_{n=1}^{\infty} g_n (n = 1, 2, ...)$. Since $g_n \leq g_{n+1}$, then $g_{n+1} - (g_{n+1} \wedge g_n) = g_{n+1} - g_n$.

Put
$$f_1 = g_1$$
, $f_2 = g_2 - g_1$, $f_3 = g_3 - g_2$,... Then $\sum_{i=1}^n f_i = g_n$ and $\sum_{i=1}^n \mu(f_i) = \mu(g_n)$. Therefore:
 $\mu^*(f) = \bigwedge \{\sum_{i=1}^\infty \mu(f_i)\} \le \sum_{i=1}^\infty \mu(f_i) = \bigvee_{n=1}^\infty \sum_{i=1}^n \mu(f_i) = \bigvee_{n=1}^\infty \mu(g_n)$

and

$$\mu^*(f) \le \bigwedge \{\bigvee_{n=1}^{\infty} \mu(g_n)\}.$$

(2) On the other hand consider any sequence $(f_i)_{i=1}^{\infty}$, $f_i \in H_0$, $f \leq \sum_{i=1}^{\infty} f_i$. Put $g_n = \sum_{i=1}^{n} f_i$. Then $g_n \in H_0$, $g_n \leq g_{n+1}$ and $\bigvee_{n=1}^{\infty} g_n = \sum_{i=1}^{\infty} f_i \geq f$.

Therefore:

$$\bigvee_{n=1}^{\infty} \mu(g_n) = \bigvee_{n=1}^{\infty} \mu(\sum_{i=1}^n f_i) = \bigvee_{n=1}^{\infty} \sum_{i=1}^n \mu(f_i) = \sum_{i=1}^{\infty} \mu(f_i)$$

and

$$\bigwedge \{\bigvee_{n=1}^{\infty} \mu(g_n); \ g_n \in H_0, \ g_n \le g_{n+1}, \ f \le \bigvee_{n=1}^{\infty} g_n\} \le \sum_{i=1}^{\infty} \mu(f_i).$$

From the last inequality we get:

$$\bigwedge \{\bigvee_{n=1}^{\infty} \mu(g_n); \ g_n \in H_0, \ g_n \le g_{n+1}, \ f \le \bigvee_{n=1}^{\infty} g_n\} \le \mu^*(f).$$

This completes the proof.

Proposition 3.7. Denote by H_0^+ the set of all functions $g = \bigvee_{n=1}^{\infty} g_n$ such that $g_n \in H_0$, $g_n \leq g_{n+1}$ (n = 1, 2, ...). The value $\bigvee_{n=1}^{\infty} \mu(g_n)$ does not depends on the sequence $(g_n)_{n=1}^{\infty}$ but only on the function g.

Proof. Let $g_n \in H_0, g_n \leq g_{n+1}, g_n \nearrow g$ and $h_n \in H_0, h_n \leq h_{n+1}, h_n \nearrow g$ then:

$$\bigvee_{n=1}^{\infty} (g_n \wedge h_m) = (\bigvee_{n=1}^{\infty} g_n) \wedge h_m$$
$$g_n \wedge h_m \nearrow g \wedge h_m = h_m$$

and

$$\mu(g_n \wedge h_m) \nearrow \mu(h_m).$$

For each $m \in N$ holds:

$$\mu(h_m) = \bigvee_{n=1}^{\infty} \mu(g_n \wedge h_m) \le \bigvee_{n=1}^{\infty} \mu(g_n)$$

and

$$\bigvee_{m=1}^{\infty} \mu(h_m) \le \bigvee_{n=1}^{\infty} \mu(g_n).$$

Similarly can be proved opposite inequality.

We proved that the value $\bigvee_{n=1}^{\infty} \mu(g_n)$ does not depends on the sequence $(g_n)_{n=1}^{\infty}$ but only on the function g.

Remark 3.8. *For any* $f \in \mathcal{F}$ *there exist a function* $g \in H_0^+$ *such that* $g \ge f$.

Remark 3.9. *Because* $\bigvee_{n=1}^{\infty} \mu(g_n)$ *does not depends on the sequence* $(g_n)_{n=1}^{\infty}$ *but only on the function g, we can define* $\mu^+ : H_0^+ \to G$ *by the formula:*

$$\mu^+(g) = \bigvee_{n=1}^{\infty} \mu(g_n).$$

Using this notation we can reformulate Proposition 3.6 by the following way:

$$\mu^*(f) = \bigwedge \{ \mu^+(g); \ g \in H_0^+, \ g \ge f \}.$$

4 Choquet lemma

The Choquet lemma states that $f_n \nearrow f$ implies $\mu^*(f_n) \nearrow \mu^*(f)$. Since in general ℓ -groups cannot be used the usual ε -technique we shall need following structure:

Definition 4.1. Dedekind σ -complete ℓ -group G is called to be weakly σ -distributive if for any bounded double sequence $(a_{i,j})$ such that $a_{i,j} \searrow 0 (j \to \infty, i = 1, 2, ...)$ it is

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} = 0.$$

Proposition 4.2. If G is a Dedekind complete ℓ -group of countable type then for any real nonnegative function f there exists a bounded double sequence $a_{i,j} \searrow 0 \ (j \to \infty, i = 1, 2, ...)$ such that for any $\varphi : N \to N$ there exists $g \in H_0^+$, $f \leq g$ such that:

$$\mu^*(f) + \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge \mu^+(g).$$

Proof. Since G is an ℓ -group of countable type, by *Remark 3.9* there exists a sequence $(h_n)_{n=1}^{\infty}$ of elements of H_0^+ such that $f \leq h_n$ and

$$\mu^*(f) = \bigwedge_{n=1}^{\infty} \mu^+(h_n).$$

Put $g_n = \bigwedge_{i=1}^n h_i$. Then $f \leq g_n, g_n \in H_0^+, g_{n+1} \leq g_n$ and:

$$\mu^*(f) = \bigwedge_{n=1}^{\infty} \mu^+(g_n).$$

Define $a_{i,j} = \mu^+(g_j) - \mu^*(f), \ j \to \infty, \ i = 1, 2, \dots$

Then $a_{ij} \searrow 0 \ (j \to \infty, \ i = 1, 2, \ldots)$. Let $\varphi : N \to N$. Then:

$$\bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge a_{i,\varphi(i)} = \mu^+(g_{\varphi(i)}) - \mu^*(f).$$

We may put $g = g_{\varphi(i)}$ and we obtain the inequality:

$$\mu^*(f) + \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge \mu^+(g)$$

This completes the proof.

Theorem 4.3. Let G be a Dedekind complete weakly σ -distributive ℓ -group of countable type. Let $f_n, f \in \mathcal{F}, f_n \nearrow f$. Then $\mu^*(f_n) \nearrow \mu^*(f)$.

Proof. We shall use two properties of μ^+ which are consequences of analogous properties of μ :

- (1) $\mu^+(g_1) + \mu^+(g_2) = \mu^+(g_1 \vee g_2) + \mu^+(g_1 \wedge g_2)$ for any $g_1, g_2 \in H_0^+$; (2) if $h_n \nearrow h, h_n \in H_0^+$, then also $h \in H_0^+$ and $\mu^+(h) = \bigvee_{n=1}^{\infty} \mu^+(h_n)$.

Let $f_n, f \in \mathcal{F}, f_n \nearrow f$. Evidently $\mu^*(f_n) \le \mu^*(f)$ and the equality holds if $\bigvee_{n=1}^{\infty} \mu^*(f_n) = \infty$.

Therefore we can assume that $\bigvee_{n=1}^{\infty} \mu^*(f_n) \in G^+$. By *Proposition 4.2* for any $n \in N$ there exists a bounded sequence $(a_{n,i,j})_{i,j}$ such that for any $\varphi: N \to N$ there exists $g_n \in H_0^+, f_n \leq g_n$ such that:

$$\mu^*(f_n) + \bigvee_{i=1}^{\infty} a_{n,i,\varphi(n+i)} \ge \mu^+(g_n)$$

By the Fremlin theorem (see [8], Theorem 3.2.3) there exists a bounded double sequence $(a_{i,j})_{i,j}\searrow 0 \ (j \to \infty, i=1,2,\ldots)$ and such that

$$a \wedge \left(\sum_{k=1}^{n} \bigvee_{i=1}^{\infty} a_{k,i,\varphi(i+k)}\right) \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}$$

for each $k \in N$.

By *Remark 3.8* for any $f \in \mathcal{F}$ there exist such $g \in H_0^+$ that $g \ge f$. Put $h_n = (\bigvee_{i=1}^n g_i) \wedge g$. Then $h_n \in H_0^+, h_n \leq h_{n+1}$ and

$$f = \bigvee_{n=1}^{\infty} f_n \le \bigvee_{n=1}^{\infty} h_n, \ \Big(\bigvee_{n=1}^{\infty} h_n = (\bigvee_{i=1}^{\infty} g_i) \land g\Big).$$

Therefore:

$$\mu^*(f_2) + \bigvee_{i=1}^{\infty} a_{2,i,\varphi(2+i)} \ge \mu^+(g_2) =$$

$$= \mu^+(g_1 \lor g_2) + \mu^+(g_1 \land g_2) - \mu^+(g_1) \ge$$

$$\ge \mu^+((g_1 \lor g_2) \land g) + \mu^*(f_1 \land f_2) - \mu^*(f_1) - \bigvee_{i=1}^{\infty} a_{1,i,\varphi(1+i)} =$$

$$= \mu^+(h_2) + \mu^*(f_1) - \mu^*(f_1) - \bigvee_{i=1}^{\infty} a_{1,i,\varphi(1+i)} =$$

$$= \mu^+(h_2) - \bigvee_{i=1}^{\infty} a_{1,i,\varphi(1+i)}.$$

Hence:

$$\mu^{+}(h_{2}) - \mu^{*}(f_{2}) \leq \bigvee_{i=1}^{\infty} a_{1,i,\varphi(1+i)} + \bigvee_{i=1}^{\infty} a_{2,i,\varphi(2+i)}$$

and similarly:

$$\mu^+(h_n) - \mu^*(f_n) \le \sum_{k=1}^n \bigvee_{i=1}^\infty a_{k,i,\varphi(k+i)}.$$

At the same time:

$$\mu^+(h_n) - \mu^*(f_n) \le \mu^+(h_n) \le \mu^+(g).$$

Therefore:

$$\mu^{+}(h_n) - \mu^{*}(f_n) \le \mu^{+}(g) \land \sum_{k=1}^n \bigvee_{i=1}^{\infty} a_{k,i,\varphi(k+i)}.$$

Let $a = \mu^+(g)$. Then we can use Fremlin theorem and it holds:

$$\mu^+(h_n) - \mu^*(f_n) \le \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}.$$

Therefore:

$$\bigvee_{n=1}^{\infty} \mu^*(f_n) + \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge \bigvee_{n=1}^{\infty} \mu^+(h_n) = \mu^+(\bigvee_{n=1}^{\infty} h_n).$$

But by the *Remark 3.9*:

$$\mu^+(\bigvee_{n=1}^{\infty}h_n) \ge \mu^*(f).$$

Hence:

$$\bigvee_{n=1}^{\infty} a_{i,\varphi(i)} \ge \mu^*(f) - \bigvee_{n=1}^{\infty} \mu^*(f_n)$$

holds for any $\varphi: N \to N$ and G is weakly σ -distributive ℓ -group, therefore we obtain:

$$0 = \bigwedge_{\varphi} \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge \mu^*(f) - \bigvee_{n=1}^{\infty} \mu^*(f_n).$$

This completes the proof.

5 Measure extension theorem

Theorem 5.1. Let G be a Dedekind complete weakly σ -distributive ℓ -group of countable type. Let $\mathcal{M} \subset \mathcal{F}$ be the family of all μ^* -measurable elements. Then \mathcal{M} is a σ -complete lattice, $H_0 \subset \mathcal{M}$, and the restriction $\mu^* | \mathcal{M}$ is a measure.

Proof. First we show that \mathcal{M} is a σ -complete lattice.

We have already proved, that \mathcal{M} is a lattice. So we have to show, that for any sequence $(f_n)_{n=1}^{\infty}$ of μ^* -measurable elements the functions $f = \bigvee_{n=1}^{\infty} f_n$ and $f' = \bigwedge_{n=1}^{\infty} f_n$ are also μ^* -measurable elements. Put $g_n = \bigvee_{i=1}^n f_i$ for each $n \in N$. Then $g_n \leq g_{n+1}$ and $\bigvee_{n=1}^{\infty} g_n = \bigvee_{n=1}^{\infty} f_n = f$ therefore $g_n \nearrow f$. Since g_n is μ^* -measurable for each $n \in N$ then for each $h \in \mathcal{F}$ holds:

$$\mu^*(h) = \mu^*(h \wedge g_n) + \mu^*(h - h \wedge g_n)$$

Since $f \ge g_n$ then $h \land f \ge h \land g_n$ and $h - h \land g_n \ge h - h \land f$. Therefore:

$$\mu^*(h - h \wedge g_n) \ge \mu^*(h - h \wedge f)$$

and

$$\mu^*(h) \ge \mu^*(h \wedge g_n) + \mu^*(h - h \wedge f).$$

Since $g_n \nearrow f$ also $h \land g_n \nearrow h \land f$ by Choquet lemma we obtain:

$$\lim_{n \to \infty} \mu^*(h \wedge g_n) = \mu^*(h \wedge f).$$

Therefore:

$$\mu^*(h) \ge \mu^*(h \wedge f) + \mu^*(h - h \wedge f).$$

Opposite inequality follows from subadditivity of outer measure μ^* . This proves that f is also the μ^* -measurable element.

Now we show that $f' = \bigwedge_{n=1}^{\infty} f_n$ is a μ^* -measurable element. Let $f' = \bigwedge_{n=1}^{\infty} f_n$. Put $g'_n = \bigwedge_{i=1}^n f_i$ for each $n \in N$. Then $g'_n \ge g'_{n+1}$ and $\bigwedge_{n=1}^{\infty} g'_n = \bigwedge_{n=1}^{\infty} f_n = f'$ therefore $g'_n \searrow f'$. Since g'_n is μ^* -measurable for each $n \in N$ then for each $h \in \mathcal{M}$ it holds:

 $\mu^{*}(h) = \mu^{*}(h \wedge g'_{n}) + \mu^{*}(h - h \wedge g'_{n}).$

Since $g'_n \geq f'$, (n = 1, 2, ...) then $h \wedge g'_n \geq h \wedge f'$ and

$$\mu^*(h \wedge g'_n) \ge \mu^*(h \wedge f').$$

Therefore:

$$\mu^*(h) \ge \mu^*(h \wedge f') + \mu^*(h - h \wedge g'_n).$$

Since $g'_n \searrow f$ then $h \land g'_n \searrow h \land f'$ and $h - h \land g'_n \nearrow h - h \land f'$ then by the Choquet lemma we obtain:

$$\lim_{n \to \infty} \mu^* (h - h \land g'_n) = \mu^* (h - h \land f')$$

therefore:

$$\mu^*(h) \ge \mu^*(h \wedge f') + \mu^*(h - h \wedge f').$$

Opposite inequality follows from subadditivity of the outer measure μ^* .

This proves that f' is the μ^* -measurable elements hence the lattice \mathcal{M} is a σ -complete lattice.

Secondly, we show that $H_0 \subset \mathcal{M}$. We already proved that for any $f \in \mathcal{F}$ it holds:

$$\mu^*(f) = \bigwedge \{ \mu^+(g); \ g \in H_0^+, \ f \le g \}.$$

Since μ^* is subadditive than for any $f \in \mathcal{F}$ and $h \in H_0$ it holds:

$$\mu^*(f) \le \mu^*(f \land h) + \mu^*(f - f \land h).$$

By the *Proposition 4.2* for any real non-negative function f there exists a bounded double sequence $a_{i,j} \searrow 0 \ (j \to \infty, i = 1, 2, ...)$ such that for any $\varphi : N \to N$ there exists $g \in H_0^+$, $f \leq g$ and that:

$$\mu^*(f) + \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge \mu^+(g).$$

But:

$$\mu^+(g) = \lim_{n \to \infty} \mu(g_n) = \lim_{n \to \infty} [\mu(g_n \wedge h) + \mu(g_n - g_n \wedge h)] =$$

 $= \lim_{n \to \infty} \mu(g_n \wedge h) + \lim_{n \to \infty} \mu(g_n - g_n \wedge h) = \mu^+(g \wedge h) + \mu^+(g - g \wedge h).$ Now we show that:

$$\mu^+(g \wedge h) + \mu^+(g - g \wedge h) \ge \mu^*(f \wedge h) + \mu^*(f - f \wedge h).$$

Since $g \ge f$ then $g \land h \ge f \land h$ and $\mu^+(g \land h) \ge \mu^*(f \land h)$. Let us use following notation:

$$(g-h)^+ = 0 \lor (g-h).$$

If $(f - h)^+ = 0$ and $g \ge f$ then $(g - h)^+ \ge (f - h)^+$. If $(f - h)^+(x) = f(x) - h(x) > 0$ then

$$(g-h)^+(x) = g(x) - h(x) \ge f(x) - h(x) = (f-h)^+(x).$$

Therefore:

$$(g-h)^{+} \ge (f-h)^{+}$$

and then:

$$\begin{split} 0 \lor (g-h) &\geq 0 \lor (f-h), \\ (g-g) \lor (g-h) &\geq (f-f) \lor (f-h), \\ g-(g \land h) &\geq f-(f \land h). \end{split}$$

Then also:

$$\mu^+(g - g \wedge h) \ge \mu^*(f - f \wedge h).$$

Hence:

$$\mu^*(f) + \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge \mu^*(f \land h) + \mu^*(f - f \land h)$$

for each $\varphi: N \to N$. Therefore:

$$\mu^*(f) = \mu^*(f \wedge h) + \mu^*(f - f \wedge h)$$

for each $h \in H_0$.

Thirdly, we show that $\mu^* | \mathcal{M}$ is a measure.

Because of the Choquet lemma it is sufficient to prove that $\mu^* | \mathcal{M}$ is an additive. Let $g, h \in \mathcal{M}$. Then it holds:

$$\mu^*(f) = \mu^*(f \wedge g) + \mu^*(f - f \wedge g).$$

Put f = g + h then:

$$\mu^*(g+h) = \mu^*((g+h) \land g) + \mu^*((g+h) - ((g+h) \land g)) = \mu^*(g) + \mu^*(h).$$

This completes the proof.

Theorem 5.2. Let $\sigma(H_0)$ be a σ -complete lattice generated by H_0 . Then $\sigma(H_0)$ is a σ -complete lattice closed under the operation + and the operation $(f,g) \mapsto f - f \wedge g$.

Proof.

1. Let $f \in H_0$ and fix it for a moment. Define:

$$A = \{g; f + g \in \sigma(H_0)\}.$$

Then $H_0 \subset A$ and A is a σ -complete lattice. Therefore also $\sigma(H_0) \subset A$.

2. Now we take $g \in \sigma(H_0)$ fixed and denote:

$$B = \{f; f + g \in \sigma(H_0)\}.$$

We can see that for any $f \in H_0$ it holds $f + g \in \sigma(H_0)$. Therefore $H_0 \subset B$. Since B is a σ -complete lattice then also $\sigma(H_0) \subset B$.

3. Let $f \in H_0$ and fix it for a moment. Define:

$$C = \{g; f - f \land g \in \sigma(H_0)\}$$

Then $H_0 \subset C$ and C is a σ -complete lattice. Therefore also $\sigma(H_0) \subset C$.

4. Now we take $g \in \sigma(H_0)$ fixed and denote:

$$D = \{f; f - f \land g \in \sigma(H_0)\}.$$

We can see that for any $f \in H_0$ it holds $f - f \wedge g \in \sigma(H_0)$. Therefore $H_0 \subset D$. Since D is a σ -complete lattice then also $\sigma(H_0) \subset D$.

We have proved that for any $f, g \in \sigma(H_0)$ also $f + g, f - f \land g \in \sigma(H_0)$.

Theorem 5.3. $\mu^* | \sigma(H_0) = \overline{\mu}$ is a measure on the σ -complete lattice $\sigma(H_0)$.

Proof. Because $H_0 \subset \mathcal{M}$ and the set \mathcal{M} of all μ^* -measurable elements is σ -complete, then $\sigma(H_0) \subset \mathcal{M}$ and therefore $\mu^* | \sigma(H_0) = \overline{\mu}$ is a restriction of the measure $\mu^* | \mathcal{M}$ on the lattice $\sigma(H_0)$.

Theorem 5.4. There exists exactly one measure $\bar{\mu}$ on $\sigma(H_0)$ that is an extension of $\mu : H_0 \to G$.

Proof. Let $\nu : \sigma(H_0) \to G^*$ be a measure which extending μ . Put

$$\mathcal{K} = \{ f \in \sigma(H_0); \nu(f) = \bar{\mu}(f) \}$$

Then $H_0 \subset \mathcal{K}$ and \mathcal{K} is σ -complete lattice, therefore $\sigma(H_0) \subset \mathcal{K}$. Therefore for any function $f \in \sigma(H_0)$ holds also $f \in \mathcal{K}$ an therefore $\nu(f) = \overline{\mu}(f)$ for each $f \in \sigma(H_0)$.

Acknowledgements

This paper was supported by Grant VEGA 1/2002/05.

References

- [1] Atanassov, K., *Intuitionistic Fuzzy Sets: Theory and Applications*, Springer, Heidelberg, 1999.
- [2] Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
- [3] Carathéodory, C., Vorelsungen über reele Funktionen. Leipzig, Berlin 1927.
- [4] Cignoli, R., I. M. L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library, Vol. 7, Kluwer, Dordrecht, 2000.
- [5] Fremlin, D. H., A direct proof of the Matthes–Wright integral extension theorem. J. London Math. Soc., Vol. 11, 1975, 276–284.
- [6] Fremlin, D. H., *Topological Riesz Spaces and Measure Theory*, Cambridge Univ. Press, 1974.
- [7] Michalíková, A., V. Valenčáková, Outer measure on *F*-sets, In: *Proc. of 3rd International IEEE Conference Intelligent Systems*, London, September 2006, 728–729.
- [8] Michalíková, A., On the extension of Riesz space valued operators. *Journal of Electrical Engineering*, Vol. 57, 2006, No. 7/s, 89–91.
- [9] Mundici, D., Interpretation of AFC*-algebras in Łukasiewicz sentential calculus, *J. Funct. Anal.*, Vol. 65, 1986, 15–63.
- [10] Riečan, B., Carathéodory measurability revisites. *Tatra Moutnains Math. Publ.*, Vol. 34, 2006, No. 2, 321–332.
- [11] Riečan, B., On measures and integrals with values in ordered groups. *Math. Slovaca*, Vol. 33, 1983, 153–163.
- [12] Riečan, B., Analysis of Fuzzy Logic Models. In: Intelligent Systems (V. M. Koleshko ed.), INTECH 2012, 219–240.
- [13] Riečan, B., T. Neubrunn, *Integral, Measure, and Ordering*. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997.
- [14] Wright. J. D. M., Stone-algebra-valued measures for vector lattices. Ann. Inst. Fourier (Grenoble), Vol. 21, 1971, 65–85.