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Štefánikova 49, SK–81473 Bratislava, Slovakia

e-mail: beloslav.riecan@umb.sk

3 Department of Mathematics, Pedagogical Faculty, Catholic University
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1 Introduction

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

A = {〈x, µA(x), νA(x)〉|x ∈ E},

where functions µA : E → [0, 1] and νA : E → [0, 1] define the degree of membership and the
degree of non-membership of the element x ∈ E, respectively, and for every x ∈ E:

0 ≤ µA(x) + νA(x) ≤ 1.
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Let us define the empty IFS and the unit IFS (see [1]) by:

O∗ = {〈x, 0, 1〉|x ∈ E},

E∗ = {〈x, 1, 0〉|x ∈ E}.

Different relations and operations are introduced over the IFSs. Some of them are the follow-
ing

A ⊂ B iff (∀x ∈ E)(µA(x) ≤ µB(x)&νA(x) ≥ νB(x)),

A = B iff (∀x ∈ E)(µA(x) = µB(x)&νA(x) = νB(x)),

A ⊆ B iff A ⊂ B or A = B,

A = {〈x, νA(x), µA(x)〉|x ∈ E},

A ∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))〉|x ∈ E},

A ∪B = {〈x,max(µA(x), µB(x)),min(νA(x), νB(x))〉|x ∈ E}.

In [6], the following two operations were introduced:

A⊕B = {〈x,min(1, µA(x) + µB(x)),max(0, νA(x) + νB(x)− 1)〉|x ∈ E},
A�B = {〈x,max(0, µA(x) + µB(x)− 1),min(1, νA(x) + νB(x))〉|x ∈ E},

Curiously, the same operations were discussed in [3] by K. Atanassov and R. Tcvetkov, be-
cause by that moment they had not known of B. Riecan’s paper [6]. While in [6] these two
operations are not named, but just denoted, in [3] these operations are named conjunction and
disjunction from Łukasiewicz type.

2 New proof

Theorem 1. For any IF sets A,B,C there holds

(A ∩B)⊕ C = (A⊕ C) ∩ (B ⊕ C),

(A ∪B)� C = (A� C) ∪ (B � C).

Proof. We have
(A ∩B)⊕ C = (µA ∧ µB, νA ∨ νB)⊕ (µC , νC) =

= (((µA ∧ µB) + µC) ∧ 1, ((νA ∨ νB) + νC − 1) ∨ 0) =

= ((µA + µC) ∧ (µB + µC) ∧ 1, (νA + νC − 1) ∨ (νB + νC − 1) ∨ 0) =

= (A⊕ C) ∩ (B ⊕ C).

The second identity can be proved analogically. �
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Theorem 2. For any IF sets A,B,C there holds

(A ∪B)⊕ C = (A⊕ C) ∪ (B ⊕ C),

(A ∩B)� C = (A�B) ∩ (B � C).

Proof. We have
(A ∪B)⊕ C = (µA ∨ µB, νA ∧ νB)⊕ (µC , νC) =

= ((µA ∨ µB + µC) ∧ 1, ((νA ∧ νB) + νC − 1) ∨ 0) =

= (((µA + µC) ∨ (µB + µC)) ∧ 1, ((νA + νC − 1) ∧ (νB + νC − 1)) ∨ 0) =

= (((µA + µC) ∧ 1) ∨ (µA + µC) ∧ 1), ((νA + νC − 1) ∨ 0) ∧ ((νB + νC − 1) ∨ 0)) =

= (A⊕ C) ∪ (B ⊕ C.

The second identity can be proved analogically. �

3 MV-algebras

It was shown in [6] that any family of IF-sets can be imbedded to an MV-algebra. From the
category point of view it was shown in [4]. We shall show that some analogies of previous results
can be formulated and proved in any MV-algebra, too.

In [5] it has been shown that any MV-algebra can be presented as an interval M = [0, u] in a
lattice order group (G,+,≤, 0). The group has the following properties:

1. G is a commutative group (G,+, 0),

2. G is a lattice (G,≤),

3. a ≤ b =⇒ a+ c ≤ b+ c.

We shall use the notation ∨,∧ for lattice operations. Further we define the Łukasiewicz binary
operations on M :

a⊕ b = (a+ b) ∧ u,

a� b = (a+ b− u) ∨ 0.

Theorem 3. Let M be a MV -algebra. Then for any a, b, c ∈M there hold:

(i) (a ∨ b)⊕ c = (a⊕ c) ∨ (b⊕ c),

(ii) (a ∧ b)� c = (a� c) ∧ (b� c),

(iii) (a ∧ b)⊕ c = (a⊕ c) ∧ (b⊕ c),

(iv) (a ∨ b)� c = (a� c) ∨ (b� c).
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Proof. We shall use the folowing identities:

(f ∨ g) + h = (f + h) ∨ (g + h),

(f ∧ g) + h = (f + h) ∧ (g + h),

(f ∧ g) ∨ h = (f ∨ h) ∧ (g ∨ h),

(f ∨ g) ∧ h = (f ∧ h) ∨ (g ∧ h).

Now, let a, b, c ∈M = [0, u] ⊂ G. Then

(a ∨ b)⊕ c = ∗ ∗ a ∨ b) + c) ∧ c =

= ((a+ c) ∨ (b+ c)) ∧ u =

= ((a+ c) ∧ u) ∨ ((b+ c) ∧ u) =

= (a⊕ b) ∨ (b⊕ c),

hence (i) has been proved. Similarly (ii) can be proved:

(a ∧ b)� c = ((a ∧ b) + c− u) ∨ 0 =

= ((a+ c− u) ∧ (b+ c− u)) ∨ 0 =

= ((a+ c− u) ∨ 0) ∧ ((b+ c− u) ∨ 0) =

= (a� c) ∧ (b� c).

The identities (iii) and (iv) cn be proved without the lattice distributive law:

(a ∧ b)⊕ c = ((a ∧ b) + c) ∧ U =

= (a+ c) ∧ (A+ c) ∧ u =

= ((a+ c) ∧ u) ∧ ((b+ c) ∧ u) =

= (a⊕ c) ∧ (b⊕ c).

Similarly
(a ∨ b)� c− ((sa ∨ b) + c− u) ∨ 0 =

= (a+ c− u) ∨ (b+ c− u) ∨ 0 =

= ((a+ c− u) ∨ 0) ∨ ((b+ c− u) ∨ 0) =

= (a� c) ∨ (b� c).

This completes the proof. �
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