On the Lukasiewicz operations over intuitionistic fuzzy sets

Beloslav Riečan ${ }^{1,2}$ and Štefan Tkáčik ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Natural Sciences, Matej Bel University Tajovského 40, 97401 Banská Bystrica, Slovakia
${ }^{2}$ Mathematical Institute, Slovak Academy of Sciences
Štefánikova 49, SK-81473 Bratislava, Slovakia
e-mail: beloslav.riecan@umb.sk
${ }^{3}$ Department of Mathematics, Pedagogical Faculty, Catholic University Hrabovská cesta 1, 03401 Ružomberok, Slovakia
e-mail: stefan.tkacik@ku.sk

Abstract

In [8] some properties of two operations - conjunction and disjunction from Łukasiewicz type - over intuitionistic fuzzy sets were studied. In the paper, a new proof of the results is given an some analogies of the results in MV algebras are given.

Keywords: Conjunction, Disjunction, Intuitionistic fuzzy set.
AMS Classification: 03E72.

1 Introduction

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1 .
$$

Let us define the empty IFS and the unit IFS (see [1]) by:

$$
\begin{aligned}
O^{*} & =\{\langle x, 0,1\rangle \mid x \in E\}, \\
E^{*} & =\{\langle x, 1,0\rangle \mid x \in E\} .
\end{aligned}
$$

Different relations and operations are introduced over the IFSs. Some of them are the following

$$
\begin{array}{lll}
A \subset B & \text { iff } & (\forall x \in E)\left(\mu_{A}(x) \leq \mu_{B}(x) \& \nu_{A}(x) \geq \nu_{B}(x)\right), \\
A=B & \text { iff } \quad(\forall x \in E)\left(\mu_{A}(x)=\mu_{B}(x) \& \nu_{A}(x)=\nu_{B}(x)\right), \\
A \subseteq B & \text { iff } \quad A \subset B \text { or } A=B, \\
\bar{A} \quad=\quad\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\}, \\
A \cap B \quad=\quad\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
A \cup B \quad=\quad\left\{\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\} .
\end{array}
$$

In [6], the following two operations were introduced:

$$
\begin{aligned}
& A \oplus B=\left\{\left\langle x, \min \left(1, \mu_{A}(x)+\mu_{B}(x)\right), \max \left(0, \nu_{A}(x)+\nu_{B}(x)-1\right)\right\rangle \mid x \in E\right\}, \\
& A \odot B=\left\{\left\langle x, \max \left(0, \mu_{A}(x)+\mu_{B}(x)-1\right), \min \left(1, \nu_{A}(x)+\nu_{B}(x)\right)\right\rangle \mid x \in E\right\},
\end{aligned}
$$

Curiously, the same operations were discussed in [3] by K. Atanassov and R. Tcvetkov, because by that moment they had not known of B. Riecan's paper [6]. While in [6] these two operations are not named, but just denoted, in [3] these operations are named conjunction and disjunction from Łukasiewicz type.

2 New proof

Theorem 1. For any IF sets A, B, C there holds

$$
\begin{aligned}
& (A \cap B) \oplus C=(A \oplus C) \cap(B \oplus C), \\
& (A \cup B) \odot C=(A \odot C) \cup(B \odot C) .
\end{aligned}
$$

Proof. We have

$$
\begin{gathered}
(A \cap B) \oplus C=\left(\mu_{A} \wedge \mu_{B}, \nu_{A} \vee \nu_{B}\right) \oplus\left(\mu_{C}, \nu_{C}\right)= \\
=\left(\left(\left(\mu_{A} \wedge \mu_{B}\right)+\mu_{C}\right) \wedge 1,\left(\left(\nu_{A} \vee \nu_{B}\right)+\nu_{C}-1\right) \vee 0\right)= \\
=\left(\left(\mu_{A}+\mu_{C}\right) \wedge\left(\mu_{B}+\mu_{C}\right) \wedge 1,\left(\nu_{A}+\nu_{C}-1\right) \vee\left(\nu_{B}+\nu_{C}-1\right) \vee 0\right)= \\
=(A \oplus C) \cap(B \oplus C) .
\end{gathered}
$$

The second identity can be proved analogically.

Theorem 2. For any IF sets A, B, C there holds

$$
\begin{aligned}
& (A \cup B) \oplus C=(A \oplus C) \cup(B \oplus C), \\
& (A \cap B) \odot C=(A \odot B) \cap(B \odot C) .
\end{aligned}
$$

Proof. We have

$$
\begin{gathered}
(A \cup B) \oplus C=\left(\mu_{A} \vee \mu_{B}, \nu_{A} \wedge \nu_{B}\right) \oplus\left(\mu_{C}, \nu_{C}\right)= \\
=\left(\left(\mu_{A} \vee \mu_{B}+\mu_{C}\right) \wedge 1,\left(\left(\nu_{A} \wedge \nu_{B}\right)+\nu_{C}-1\right) \vee 0\right)= \\
=\left(\left(\left(\mu_{A}+\mu_{C}\right) \vee\left(\mu_{B}+\mu_{C}\right)\right) \wedge 1,\left(\left(\nu_{A}+\nu_{C}-1\right) \wedge\left(\nu_{B}+\nu_{C}-1\right)\right) \vee 0\right)= \\
\left.=\left(\left(\left(\mu_{A}+\mu_{C}\right) \wedge 1\right) \vee\left(\mu_{A}+\mu_{C}\right) \wedge 1\right),\left(\left(\nu_{A}+\nu_{C}-1\right) \vee 0\right) \wedge\left(\left(\nu_{B}+\nu_{C}-1\right) \vee 0\right)\right)= \\
=(A \oplus C) \cup(B \oplus C .
\end{gathered}
$$

The second identity can be proved analogically.

3 MV-algebras

It was shown in [6] that any family of IF-sets can be imbedded to an MV-algebra. From the category point of view it was shown in [4]. We shall show that some analogies of previous results can be formulated and proved in any MV-algebra, too.

In [5] it has been shown that any MV-algebra can be presented as an interval $M=[0, u]$ in a lattice order group $(G,+, \leq, 0)$. The group has the following properties:

1. G is a commutative group $(G,+, 0)$,
2. G is a lattice (G, \leq),
3. $a \leq b \Longrightarrow a+c \leq b+c$.

We shall use the notation \vee, \wedge for lattice operations. Further we define the Łukasiewicz binary operations on M :

$$
\begin{gathered}
a \oplus b=(a+b) \wedge u, \\
a \odot b=(a+b-u) \vee 0
\end{gathered}
$$

Theorem 3. Let M be a $M V$-algebra. Then for any $a, b, c \in M$ there hold:
(i) $(a \vee b) \oplus c=(a \oplus c) \vee(b \oplus c)$,
(ii) $(a \wedge b) \odot c=(a \odot c) \wedge(b \odot c)$,
(iii) $(a \wedge b) \oplus c=(a \oplus c) \wedge(b \oplus c)$,
(iv) $(a \vee b) \odot c=(a \odot c) \vee(b \odot c)$.

Proof. We shall use the folowing identities:

$$
\begin{aligned}
(f \vee g)+h & =(f+h) \vee(g+h), \\
(f \wedge g)+h & =(f+h) \wedge(g+h), \\
(f \wedge g) \vee h & =(f \vee h) \wedge(g \vee h), \\
(f \vee g) \wedge h & =(f \wedge h) \vee(g \wedge h) .
\end{aligned}
$$

Now, let $a, b, c \in M=[0, u] \subset G$. Then

$$
\begin{aligned}
& (a \vee b) \oplus c=* * a \vee b)+c) \wedge c= \\
& \quad=((a+c) \vee(b+c)) \wedge u= \\
& =((a+c) \wedge u) \vee((b+c) \wedge u)= \\
& \quad=(a \oplus b) \vee(b \oplus c)
\end{aligned}
$$

hence (i) has been proved. Similarly (ii) can be proved:

$$
\begin{aligned}
& \quad(a \wedge b) \odot c=((a \wedge b)+c-u) \vee 0= \\
& =((a+c-u) \wedge(b+c-u)) \vee 0= \\
& =((a+c-u) \vee 0) \wedge((b+c-u) \vee 0)= \\
& =(a \odot c) \wedge(b \odot c) .
\end{aligned}
$$

The identities (iii) and (iv) en be proved without the lattice distributive law:

$$
\begin{gathered}
(a \wedge b) \oplus c=((a \wedge b)+c) \wedge U= \\
=(a+c) \wedge(A+c) \wedge u= \\
=((a+c) \wedge u) \wedge((b+c) \wedge u)= \\
=(a \oplus c) \wedge(b \oplus c)
\end{gathered}
$$

Similarly

$$
\begin{gathered}
(a \vee b) \odot c-((s a \vee b)+c-u) \vee 0= \\
=(a+c-u) \vee(b+c-u) \vee 0= \\
=((a+c-u) \vee 0) \vee((b+c-u) \vee 0)= \\
=(a \odot c) \vee(b \odot c) .
\end{gathered}
$$

This completes the proof.

References

[1] Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
[2] Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
[3] Atanassov, K., R. Tcvetkov, On Łukasiewicz's intuitionistic fuzzy disjunction and conjunction, Annual of "Informatics" Section, Union of Scientists in Bulgaria, Vol.3, 2010, 90-94.
[4] Frič, R., M. Papčo M, On probability domains III. Internat. J. Theoret. Phys. (submitted)
[5] Mundici, D., Interpretation of AFC*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal., Vol. 65, 1986, 15-63.
[6] Riečan, B., A descriptive definition of the probability on intuitionistic fuzzy sets. Proc. of the Third Conf. of the European Society for Fuzzy Logic and Technology EUSFLAT' 2003, Zittau, 10-12 Sept. 2003, 210-213.
[7] Riečan, B., Analysis of Fuzzy Logic Models. In: Intelligent Systems (V. M. Koleshko ed.), INTECH 2012, 219-240.
[8] Riečan, B., K. Atanassov, Some properties of operations conjunction and disjunction from Łukasiewicz type over intuitionistic fuzzy sets. Part 1. Notes on Intuitionistic Fuzzy Sets, Vol. 20, 2014, No. 3, 1-5.
[9] Riečan, B., K. Atanassov, Some properties of operations conjunction and disjunction from Łukasiewicz type over intuitionistic fuzzy sets. Part 2. Notes on Intuitionistic Fuzzy Sets, Vol. 20, 2014, No. 4, 1-6.

