10th Int. Workshop on IFSs, Banská Bystrica, 29 Sept. 2014 Notes on Intuitionistic Fuzzy Sets ISSN 1310–4926 Vol. 20, 2014, No. 4, 14–18

On the Łukasiewicz operations over intuitionistic fuzzy sets

Beloslav Riečan^{1,2} and Štefan Tkáčik³

¹ Department of Mathematics, Faculty of Natural Sciences, Matej Bel University Tajovského 40, 974 01 Banská Bystrica, Slovakia

> ² Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK–81473 Bratislava, Slovakia e-mail: beloslav.riecan@umb.sk

³ Department of Mathematics, Pedagogical Faculty, Catholic University Hrabovská cesta 1, 034 01 Ružomberok, Slovakia e-mail: stefan.tkacik@ku.sk

Abstract: In [8] some properties of two operations – conjunction and disjunction from Łukasiewicz type – over intuitionistic fuzzy sets were studied. In the paper, a new proof of the results is given an some analogies of the results in MV algebras are given.

Keywords: Conjunction, Disjunction, Intuitionistic fuzzy set.

AMS Classification: 03E72.

1 Introduction

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \},\$$

where functions $\mu_A: E \to [0,1]$ and $\nu_A: E \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$0 \le \mu_A(x) + \nu_A(x) \le 1.$$

Let us define the *empty IFS* and the unit IFS (see [1]) by:

$$O^* = \{ \langle x, 0, 1 \rangle | x \in E \},$$

$$E^* = \{ \langle x, 1, 0 \rangle | x \in E \}.$$

Different relations and operations are introduced over the IFSs. Some of them are the following

$$A \subset B \quad \text{iff} \quad (\forall x \in E)(\mu_A(x) \leq \mu_B(x) \& \nu_A(x) \geq \nu_B(x)),$$

$$A = B \quad \text{iff} \quad (\forall x \in E)(\mu_A(x) = \mu_B(x) \& \nu_A(x) = \nu_B(x)),$$

$$A \subseteq B \quad \text{iff} \quad A \subset B \text{ or } A = B,$$

$$\overline{A} \quad = \quad \{\langle x, \nu_A(x), \mu_A(x) \rangle | x \in E\},$$

$$A \cap B \quad = \quad \{\langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle | x \in E\},$$

$$A \cup B \quad = \quad \{\langle x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) \rangle | x \in E\}.$$

In [6], the following two operations were introduced:

$$A \oplus B = \{ \langle x, \min(1, \mu_A(x) + \mu_B(x)), \max(0, \nu_A(x) + \nu_B(x) - 1) \rangle | x \in E \},$$

$$A \odot B = \{ \langle x, \max(0, \mu_A(x) + \mu_B(x) - 1), \min(1, \nu_A(x) + \nu_B(x)) \rangle | x \in E \},$$

Curiously, the same operations were discussed in [3] by K. Atanassov and R. Tcvetkov, because by that moment they had not known of B. Riecan's paper [6]. While in [6] these two operations are not named, but just denoted, in [3] these operations are named *conjunction and disjunction from Łukasiewicz type*.

2 New proof

Theorem 1. For any IF sets A, B, C there holds

$$(A \cap B) \oplus C = (A \oplus C) \cap (B \oplus C),$$

 $(A \cup B) \odot C = (A \odot C) \cup (B \odot C).$

Proof. We have

$$(A \cap B) \oplus C = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B) \oplus (\mu_C, \nu_C) =$$

$$= (((\mu_A \wedge \mu_B) + \mu_C) \wedge 1, ((\nu_A \vee \nu_B) + \nu_C - 1) \vee 0) =$$

$$= ((\mu_A + \mu_C) \wedge (\mu_B + \mu_C) \wedge 1, (\nu_A + \nu_C - 1) \vee (\nu_B + \nu_C - 1) \vee 0) =$$

$$= (A \oplus C) \cap (B \oplus C).$$

The second identity can be proved analogically.

Theorem 2. For any IF sets A, B, C there holds

$$(A \cup B) \oplus C = (A \oplus C) \cup (B \oplus C),$$

 $(A \cap B) \odot C = (A \odot B) \cap (B \odot C).$

Proof. We have

$$(A \cup B) \oplus C = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B) \oplus (\mu_C, \nu_C) =$$

$$= ((\mu_A \vee \mu_B + \mu_C) \wedge 1, ((\nu_A \wedge \nu_B) + \nu_C - 1) \vee 0) =$$

$$= (((\mu_A + \mu_C) \vee (\mu_B + \mu_C)) \wedge 1, ((\nu_A + \nu_C - 1) \wedge (\nu_B + \nu_C - 1)) \vee 0) =$$

$$= (((\mu_A + \mu_C) \wedge 1) \vee (\mu_A + \mu_C) \wedge 1), ((\nu_A + \nu_C - 1) \vee 0) \wedge ((\nu_B + \nu_C - 1) \vee 0)) =$$

$$= (A \oplus C) \cup (B \oplus C.$$

The second identity can be proved analogically.

3 MV-algebras

It was shown in [6] that any family of IF-sets can be imbedded to an MV-algebra. From the category point of view it was shown in [4]. We shall show that some analogies of previous results can be formulated and proved in any MV-algebra, too.

In [5] it has been shown that any MV-algebra can be presented as an interval M = [0, u] in a lattice order group $(G, +, \leq, 0)$. The group has the following properties:

- 1. G is a commutative group (G, +, 0),
- 2. G is a lattice (G, \leq) ,
- 3. $a < b \Longrightarrow a + c < b + c$.

We shall use the notation \vee , \wedge for lattice operations. Further we define the Łukasiewicz binary operations on M:

$$a \oplus b = (a+b) \wedge u,$$

 $a \odot b = (a+b-u) \vee 0.$

Theorem 3. Let M be a MV-algebra. Then for any $a, b, c \in M$ there hold:

(i)
$$(a \lor b) \oplus c = (a \oplus c) \lor (b \oplus c)$$
,

(ii)
$$(a \wedge b) \odot c = (a \odot c) \wedge (b \odot c)$$
,

(iii)
$$(a \wedge b) \oplus c = (a \oplus c) \wedge (b \oplus c)$$
,

(iv)
$$(a \lor b) \odot c = (a \odot c) \lor (b \odot c)$$
.

Proof. We shall use the following identities:

$$(f \lor g) + h = (f+h) \lor (g+h),$$

$$(f \land g) + h = (f+h) \land (g+h),$$

$$(f \land g) \lor h = (f \lor h) \land (g \lor h),$$

$$(f \lor g) \land h = (f \land h) \lor (g \land h).$$

Now, let $a, b, c \in M = [0, u] \subset G$. Then

$$(a \lor b) \oplus c = **a \lor b) + c) \land c =$$

$$= ((a+c) \lor (b+c)) \land u =$$

$$= ((a+c) \land u) \lor ((b+c) \land u) =$$

$$= (a \oplus b) \lor (b \oplus c),$$

hence (i) has been proved. Similarly (ii) can be proved:

$$(a \wedge b) \odot c = ((a \wedge b) + c - u) \vee 0 =$$

$$= ((a + c - u) \wedge (b + c - u)) \vee 0 =$$

$$= ((a + c - u) \vee 0) \wedge ((b + c - u) \vee 0) =$$

$$= (a \odot c) \wedge (b \odot c).$$

The identities (iii) and (iv) on be proved without the lattice distributive law:

$$(a \wedge b) \oplus c = ((a \wedge b) + c) \wedge U =$$

$$= (a + c) \wedge (A + c) \wedge u =$$

$$= ((a + c) \wedge u) \wedge ((b + c) \wedge u) =$$

$$= (a \oplus c) \wedge (b \oplus c).$$

Similarly

$$(a \lor b) \odot c - ((sa \lor b) + c - u) \lor 0 =$$

= $(a + c - u) \lor (b + c - u) \lor 0 =$
= $((a + c - u) \lor 0) \lor ((b + c - u) \lor 0) =$
= $(a \odot c) \lor (b \odot c).$

This completes the proof.

References

- [1] Atanassov, K., *Intuitionistic Fuzzy Sets*, Springer, Heidelberg, 1999.
- [2] Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
- [3] Atanassov, K., R. Tcvetkov, On Łukasiewicz's intuitionistic fuzzy disjunction and conjunction, *Annual of "Informatics" Section*, Union of Scientists in Bulgaria, Vol.3, 2010, 90–94.
- [4] Frič, R., M. Papčo M, On probability domains III. *Internat. J. Theoret. Phys.* (submitted)
- [5] Mundici, D., Interpretation of AFC*-algebras in Łukasiewicz sentential calculus, *J. Funct. Anal.*, Vol. 65, 1986, 15–63.
- [6] Riečan, B., A descriptive definition of the probability on intuitionistic fuzzy sets. *Proc. of the Third Conf. of the European Society for Fuzzy Logic and Technology EUSFLAT' 2003*, Zittau, 10–12 Sept. 2003, 210–213.
- [7] Riečan, B., Analysis of Fuzzy Logic Models. In: *Intelligent Systems (V. M. Koleshko ed.), INTECH 2012*, 219–240.
- [8] Riečan, B., K. Atanassov, Some properties of operations conjunction and disjunction from Łukasiewicz type over intuitionistic fuzzy sets. Part 1. *Notes on Intuitionistic Fuzzy Sets*, Vol. 20, 2014, No. 3, 1–5.
- [9] Riečan, B., K. Atanassov, Some properties of operations conjunction and disjunction from Łukasiewicz type over intuitionistic fuzzy sets. Part 2. *Notes on Intuitionistic Fuzzy Sets*, Vol. 20, 2014, No. 4, 1–6.