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Abstract: In the paper analogously to the notion of fuzzy numbers ([10, 11, 12, 13, 14, 18],
the notion of the IF-number is introduced, using a new approach and it is studied. Especially it
is proved that the space of all IF-numbers with a convenient metric function is a complete metric
space.
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1 Introduction

Various results of classical theories can be trasformed to some fuzzy generalizations [19, 20]). So
in [10], and [7] the Kurzweil - Henstock integration theory (e.g. [7, 17]) was generalized to the
fuzzy case.

Of course, a special problem presents the studium of intuitionistic fuzzy sets theory ([1, 2]).
Since in [10] and [18] an integration theory has been based on well constructed theory of fuzzy
numbers, our aim in this paper is a construction of something similar in the IF-case.

In a series of papers, see, e.g. [3, 4, 5, 6, 8], the concet of an IF-number is introduced and
some of its basic properties are studied. Here, we shall give a new approach for defining of the
notion of an IF-number and study some properties of the set D of all IF-numbers.
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2 Preliminaries

First we shall define the notion of an IF-number. A maping α : R → [0, 1] is called a fuzzy
number, if

1. α is normal, i.e. α(r) = 1 for some r ∈ R.

2. α is convex, i.e. α(λu+ (1− λ)v) ≥ min{α(u), α(v)} for all u, v ∈ R and α ∈ [0, 1].

3. α is semicontinuous, i.e. for every λ ∈ [0, 1] the set {x ∈ R;α(x) ≥ λ} is closed.

4. cl([α]0) = cl({x ∈ R;α(x) > 0} is compact.

If α is a fuzzy number and λ ∈ R, then {x;α(x) ≥ λ} is an interval [αλ,1, αλ,2] (see [13]). In
[12] the following assertion has been proved:

Lemma 1. Let α1, α2 : [0, 1]→ R satisfy the following properties:

1. α1 is increasing, α2 is decreasing,

2. α1(1) ≤ α2(1),

3. α1, α2 are left continuous on (0, 1], and right continuous at 0.

Then there exists exactly one fuzzy number α such that

{x;α(x) ≥ λ} = [α1(λ), α2(λ)]

for each λ ∈ [0, 1].

Let α, β be fuzzy numbers and λ ∈ [0, 1]. Put

γ1 = α1 + β1, γ2 = α2 + β2.

Then by Lemma 1 there exists exactly one fuzzy number γ such that

{x; γ(x) ≥ λ} = [α1(λ) + β1(λ), α2(λ) + β2(λ)]

The fuzzy number γ will be denoted by

γ = α + β.
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3 An IF-number

Let again α, β be fuzzy numbers and λ ∈ [0, 1]. Then we define

ρλ(α, β) = max{| αλ,1 − βλ,1 |, | αλ,2 − βλ,2 |}

and

ρ̂(α, β) = sup{ρλ(α, β);λ > 0}.

If A = (µA, νA) is an IF set, then it is an IF-number, iff µA, νA are fuzzy numbers.

Denote by D the family of all IF-numbers. If A, B ∈ D, then we define the distance

d(A,B) = ρ̂(µA, µB) + ρ̂(νA, νB).

Theorem. The function d : D × D → R is a metric, the couple (D, d) is a complete metric
space.
Proof. Let A = (µA, νA), B = (µB, νB), C = (µC , νC). Then

d(A,A) = ρ̂(µA, µA) + ρ̂(νA, νA) = 0

and

d(A,B) = ρ̂(µA, µB) + ρ̂(νA, νB) = 0

implies

ρ̂(µA, µB) = 0, ρ̂(νA, νB) = 0.

Therefore

A = (µA, νA) = (µB, νB) = B.

Evidently,

d(A,B) = d(B,A)

and

d(A,C) = ρ̂(µA, µC) + ρ̂(νA, νC) ≤
≤ ρ̂(µA, µB)+ρ̂(νA, νB) + ρ̂(µB, µC) + ρ̂(νB, νC) = d(A,B) + d(B,C).

Now let (An)n be Cauchy, An = (µAn , νAn)n. Then also (µAn)n, (νAn)n are Cauchy, hence
they have limits. Denote them µA, resp. νA. Hence

lim
n→∞

ρ̂(µAn , µA) = 0, lim
n→∞

ρ̂(νAn , νA) = 0

Since An = (µAn , νAn) ∈ D we have

µAn + νAn ≤ 1, n = 1, 2, · · ·

Therefore

µA + νA = lim
n→∞

µAn + lim
n→∞

νAn = lim
n→∞

(µAn + νAn) ≤ 1,

hence A ∈ D.
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4 Conclusion

Analagously to the notion of the fuzzy number we have introduced the notion of IF-numbers.
Simultaneously we have shown two applications. Of course, it is possible to hope to find some
other applications on mathematical analysis on D similarly to those appearing in [4, 9, 15, 16].
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