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Abstract: In the paper analogously to the notion of fuzzy numbers ([10, 11, 12, 13, 14, 18],
the notion of the IF-number is introduced, using a new approach and it is studied. Especially it
is proved that the space of all I[F-numbers with a convenient metric function is a complete metric
space.
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1 Introduction

Various results of classical theories can be trasformed to some fuzzy generalizations [19, 20]). So
in [10], and [7] the Kurzweil - Henstock integration theory (e.g. [7, 17]) was generalized to the
fuzzy case.

Of course, a special problem presents the studium of intuitionistic fuzzy sets theory ([1, 2]).
Since in [10] and [18] an integration theory has been based on well constructed theory of fuzzy
numbers, our aim in this paper is a construction of something similar in the IF-case.

In a series of papers, see, e.g. [3, 4, 5, 6, 8], the concet of an IF-number is introduced and
some of its basic properties are studied. Here, we shall give a new approach for defining of the
notion of an IF-number and study some properties of the set D of all I[F-numbers.



2 Preliminaries

First we shall define the notion of an IF-number. A maping o : R — [0, 1] is called a fuzzy

number, if
1. ais normal, i.e. a(r) = 1 for some r € R.
2. aisconvex, i.e. a(Au+ (1 — A)v) > min{a(u),a(v)} forall u,v € Rand a € [0, 1].
3. «ais semicontinuous, i.e. for every A € [0, 1] the set {z € R; a(z) > A} is closed.

4. cl([a]o) = c({r € R;a(x) > 0} is compact.

If «v is a fuzzy number and \ € R, then {z; (z) > A} is an interval [ay 1, @y 2] (see [13]). In
[12] the following assertion has been proved:

Lemma 1. Let o, s : [0, 1] — R satisfy the following properties:

1. «y is increasing, oy is decreasing,

2. an(1) < an(l),

3. ai, g are left continuous on (0, 1], and right continuous at 0.
Then there exists exactly one fuzzy number o such that

{z;a(z) =2 A} = [ (A), a2(N)]

foreach \ € [0,1].

Let v, /3 be fuzzy numbers and A € [0, 1]. Put

N =01+ P72 =az+ P
Then by Lemma 1 there exists exactly one fuzzy number v such that
{z;7(2) 2 A} = [01(A) + Bi(N), az(A) + B2(N)]
The fuzzy number v will be denoted by

vy=a+ 0.
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3 An IF-number

Let again «, (3 be fuzzy numbers and A € [0, 1]. Then we define
pa(a, B) = max{| ax1 — Ba1 |, [ axe — Baz |}
and
pla, B) = sup{px(a, B); A > 0}

If A= (ua,v4)is anIF set, then it is an IF-number, iff 14, 4 are fuzzy numbers.

Denote by D the family of all IF-numbers. If A, B € D, then we define the distance

d(A7 B) = ﬁ(ﬂ/hﬂB) + ﬁ(VAa VB)'

Theorem. The functiond : D x D — R is a metric, the couple (D, d) is a complete metric
space.
Proof. Let A = (a,va), B = (up,vp), C = (uc,vc). Then

d(A7A) = ﬁ(MA,MA) + ﬁ(VA’ VA) =0

and
d(A, B) = p(pa, i) + p(va,vp) =0

implies

p(pa,pp) =0, p(ra,ve) =0.
Therefore

A= (pua,va) = (up,ve) = B.

Evidently,
d(A,B) =d(B, A)

and

d(A, C) = p(pa, pe) + plva,ve) <
S ﬁ(ﬂAauB)+ﬁ(VAa VB) + ﬁ(,UBaHC) + ﬁ(VBa VC) = d(A7B) + d(37 C)

Now let (A,), be Cauchy, A, = (ua,,va, ). Then also (ua, )n, (¥4, ), are Cauchy, hence
they have limits. Denote them .4, resp. v4. Hence

hm ﬁ(:uAnw ,LLA) = 07 hm ﬁ(VA'rH VA) = 0
n—oo n—oo
Since A,, = (p1a,,va,) € D we have
A, +VAn < ]-7n: 1)27”'
Therefore
pa+va= lim pa, + lim vy, = lim (pa, +va,) <1,
n—oo n—oo n—oo

hence A € D. O
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4

Conclusion

Analagously to the notion of the fuzzy number we have introduced the notion of IF-numbers.

Simultaneously we have shown two applications. Of course, it is possible to hope to find some

other applications on mathematical analysis on D similarly to those appearing in [4, 9, 15, 16].
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