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K. Maraş, Turkey

e-mail: citil@ksu.edu.tr
2 Department of Mathematics, University of Mersin
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Abstract: The homotopy theory is used some areas in mathematics and it has some applications
in different areas. The fuzzy homotopy theory was introduced by authors [4] in 2006. After this
paper, some topological other structures were studied by several authors [2, 3, 5, 6].

In this paper, firstly, we defined the intuitionistic fuzzy homotopic functions using topological
properties. Then, we got some properties of intuitionistic fuzzy homotopic functions and concept
of intuitionistic fuzzy homotopy theory.
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1 Introduction

The theory of fuzzy sets (FSs) was first stated by Zadeh in 1965, [7]. Let X be a set, then the
function µA : X → [0, 1] is called a fuzzy set over X and it is shown µA ∈ FS(X). From now
on, we will use A instead of µA. For x ∈ X , µA(x) is called the membership degree of x on A.
And for A ∈ FS(X), the complement of A is defined using the equation coA(x) = 1− A(x).

It is obvious from the definition above that the sum of the membership degree and nonmem-
bership degree is equal to 1. But in real life one can think that two certain objects are in relation
R with eachother having a determinate degree. Besides this, this person may not be sure about
it. This means that there is a possibility of existence of an uncertainity about the degree of the
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relationship between these two objects. In the theory of fuzzy sets, it does not have a meaning to
incorporate this uncertainity in the degrees of membership.

Atanassov defined intuitionistic fuzzy sets in 1983, [1], in order to give a possible solution
for this problem. While the nonmembership degree for each element of the universe is fixed
in fuzzy set theory, in intuitionistic fuzzy set theory, nonmembership degree is a more or less
independent degree; satisfying the condition that it is smaller than 1−membership degree. So,
if X a universe, then there exist two membersip and nonmembership degrees for each x ∈ X,

respectively µA(x) and νA(x) such that 0 ≤ µA(x) + νA(x) ≤ 1.
IFS A is determined with the membership and non-membership of µA(x) ∈ FS(X),

νA(x) ∈ FS(X) for x ∈ X respectively. For each x ∈ X , πA(X) = 1 − µA(x) − νA(x)

is called hesitation degree of intuitionistic index of x at A.
Although the sum of the degrees of membership and not being a member of an element in FS

theory is 1, in IFS theory this sum is less than 1. Besides this, if A ∈ IFS(X), then µA, νA ∈
FS(X) and 1− µA ≤ νA and 1− νA ≤ µA. The length of the interval [µA(x), 1− νA(x)] which
is given by πA(X), can be considered as hesitation modelling degree between two membership
degrees.

An IFS A is said to be contained in an IFS B (notation A ⊆ B) if and only if, for all
x ∈ X : µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

The intersection (resp.the union) of two IFSs A and B on X is defined as the IFSs

A ∩B = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 |x ∈ X},

respectively,
A ∪B = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 |x ∈ X}.

Definition 1. Let X, Y be two sets. If R ∈ IFS(X × Y ), then R is called intuitionistic fuzzy
relation (IFR) from X to Y . If R is a relation from X to Y , then it is clear that there is an IFS
of R over X × Y . For x ∈ X, y ∈ Y, their membership degrees in R at µR(x, y) becomes their
non-membership degrees in R at νR(x, y).

Definition 2. Let X, Y, Z be sets and R ∈ IFR(X, Y ), S ∈ IFR(Y, Z).

R ◦ S = {(x, z), µR◦S(x, z), νR◦S(x, z)|x ∈ X, z ∈ Z}.

Here, the IFS which is defined by

µR◦S(x, z) = sup
y∈Y
{µR(x, y) ∧ µS(y, z)}

νR◦S(x, z) = inf
y∈Y
{νR(x, y) ∨ νS(y, z)}

is called the composition of R and S.
For any intuitionistic fuzzy set A ∈ IFS(X) and any t, s ∈ [0, 1], the (t, s) − cut of A is

defined as the following:

At,s = {x ∈ X|µA(x) ≥ t ∧ υA(x) ≤ s}.

For (t, s)− cut we have the following properties:
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1. (A ∪B)t,s = At,s ∪Bt,s

2. (A ∩B)t,s = At,s ∩Bt,s

(t, s)A is a intuitionistic fuzzy set which is defined by, x ∈ X, t, s ∈ [0, 1],

((t, s)A)(x) = (t, s) ∧ A(x)

The Resolution Theorems are given as

A = ∪{(t, s)At,s|t, s ∈ [0, 1]}

We know that, for any x ∈ X, t, s ∈ [0, 1] , xλ is a intuitionistic fuzzy point and if A ∈ F (X)

is a fuzzy set then
A = ∪{xt,s|xt,s ∈ A}

thus, we can write,
A = ∪{xA(x)|x ∈ X}

If A ∈ F (X) and B ∈ F (Y ), xλ ∈ A, yη ∈ B, and by denoting

〈xλ, yη〉 = (x, y)λ∧η

then

A×B = ∪{〈xt,s, ym.n〉 |xt.s ∈ A, ym,n ∈ B} = ∪{(xA(x), yB(y))|x ∈ X, y ∈ Y }

Definition 3. Let A ∈ IFS(X), B ∈ IFS(Y ), C ∈ IFS(Z), R ⊆ A × B Q ⊆ B × C are
intuitionistic fuzzy relations from A to B and from B to C resp., and put

Q ◦R = ∪{(t, s)(Qt,s ◦Rt,s|t, s ∈ [0, 1]}.

This is called composition of Q and R.

Definition 4. For A ∈ IFS(X), an intuitionistic fuzzy relation R on A is called an intuitionistic
fuzzy equivalence relation on A, if for any t, s ∈ [0, 1], Rt,s is an equivalence relation on At,s.

Lemma 1. R is an intuitionistic fuzzy equivalence relation on A if and only if A satisfies the
following relation;

1. (∀x ∈ X), (R(x, x) = 1) (reflexivity)

2. (∀x, y ∈ X), (R(x, y) = R(y, x)) (symmetry)

3. R ◦R ⊆ R (transitivity).

Let R be an equivalence relation on A and 〈xt,s, ym,n〉 ∈ R, x, y ∈ X , then we say
“xt,s equivalent to ym,n” or ”xt,s and ym,n are equivalent.”

For any xt,s ∈ A, using (xt,s)R = ∪{ym,n| 〈xt,s, ym,n〉 ∈ R}. This is called R-equivalence
class of xt,s, and simply denoted by (xt,s). Now, we put

A�B = {(xt,s)|xt,s ∈ A}.

We denoted, R−1 = ∪{λR−1λ : t, s ∈ [0, 1]}, it is inverse relation of R.
If, R = ∪{〈xt,s, ym,n〉 |x, y ∈ X} then R−1 = ∪{〈ym,n, xt,s〉 |x, y ∈ X} and (R−1)−1 = R.
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Definition 5. Let X, Y be two non-empty sets. The mapping f : X → IFS(Y ) is called an
intuitionistic fuzzy mapping from X to Y, namely,

x 7→ f(x) = {
〈
y, f 1

x(y), f
2
x(y)

〉
|y ∈ Y }

where, for a x ∈ X, f 1
x , f

2
x : Y → [0, 1] and satisfying 0≤ f 1

x(y) + f 2
x(y) ≤ 1 for all y ∈ Y.

Given a intuitionistic fuzzy mapping f , for x ∈ X, y ∈ Y, the value can be denoted by

f(x)(y) =
〈
f 1
x(y), f

2
x(y)

〉
From the definition of intuitionistic fuzzy mapping, it is easily seen that f 1

x and f 2
x are fuzzy

sets. So, we can use the following definition.

Definition 6. ForA ∈ F (X) andB ∈ F (Y ), a fuzzy relation f ⊆ A×B is called a fuzzy mapping
fromA toB if fλ is a mapping fromAλ toBλ for α any λ ∈ [0, 1]. When f is a fuzzy mapping from
A toB, we denote it by f : A→ B. f : A→ B is called a fuzzy injection if fλ is an injection from
Aλ to Bλ for any λ ∈ [0, 1], it is called a fuzzy surjection if (∀λ ∈ [0, 1])(B<λ> ⊆ fλ(Aλ) ⊆ Bλ)

and it is called a fuzzy bijection if f is injection and surjection.

Definition 7. Let X, Y be two non-empty sets. Let f : X → IFS(Y ) is an intuitionistic fuzzy
mapping from X to Y . Then f is intuitionitistic fuzzy injection (surjection) then f 1

x(y) and f 2
x(y)

are fuzzy injections (surjections) and it is called a fuzzy bijection if f is injection and surjection.

Definition 8. An intuitionistic fuzzy topology on X is a family τ of IFSs in X satisfying the follow-
ing axioms

1. 0, 1 ∈ τ

2. G1 ∩G2 ∈ τ for any G1, G2 ∈ τ

3. ∪Gi ∈ τ for any {Gi|i ∈ I}

In this case the pair (X, τ ) is called an intuitionistic fuzzy topological space and each intu-
itionistic fuzzy set in τ is known as an intuitionistic fuzzy open set in X .

Definition 9. Let A ∈ FS(X), B ∈ FS(Y ), (A, τ1) and (B, τ2) two topological spaces and
fuzzy topological spaces and f : A → B a fuzzy function. f is fuzzy continuous if and only if for
every t ∈ I, ft : At → Bt is continuous.

Definition 10. Let f : X → IFS(Y ) is called an intuitionistic fuzzy mapping from X to Y. f is
intuitionistic fuzzy continuous if and only if f 1

x , f
2
x are fuzzy continuous.

Definition 11. Let (A, τ1) and (B, τ2) be fuzzy topological spaces and f, g : A → B are
fuzzy continuous functions. f is fuzzy homotope to g if there exist a fuzzy continuous function
F : A× I → B such that for every t ∈ I ,
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Ft,s(x, 0) = ft,s(x),

Ft,s(x, 1) = gt,s(x),

Ft,s(x, (m,n)) = fm,nt,s (x).

If f and g are fuzzy homotopic functions we write f ∼ g.

Proposition 1. It is clear that every continuous function homotopic to itself.

Definition 12. Let (A, τ1) and (B, τ2) be fuzzy topological spaces. Let X0 ⊂ X and there exists
functions f, g : X → Y such that the condition for every x0 ∈ X0, f(x0) = g(x0) is satisfied. f
is intuitionistic fuzzy homotopic to g relative to x0 and written by f ∼ grel.X0, if there exists a
function F : A× I → Bsuch that the follwing conditions hold:

1. Ft,s(x, 0) = f(x), Ft,s(x, 1) = g(x), for every x ∈ X

2. Ft,s(x0, (m,n)) = f(x0) = g(x0), for every x0 ∈ X0

Remark 1. In the above definition, if we choose X0 = ∅ then f is homotopic to g.

Theorem 1. Intuitionistic fuzzy homotopy relation is intuitionistic fuzzy equivaliance relation.

Proof. Now that for every continuous function f, f ∼ f. Assume that f ∼ g, then there exists a
function F such that the conditions of the Definition are satisfied. If we rewrite the function F as
F ′(x, (t, s)) = F (x, 1− t), then we get g ∼ f . The distributive condition is clear.

Definition 13. Let X and Y be topological spaces and A and B are intuitionistic fuzzy topological
spaces on X and Y respectively. Let f, g ⊂ A × B intuitionistic fuzzy continuous and f ∼ g. If
|img| = 1 then it is called that f is homotopic to arbitrary.

Definition 14. X is contractibility or X may deformated to a point if the identity definition on X
is homotopic to arbitrary.

Theorem 2. Let X be a intuitionistic fuzzy topological space and Y can be deformated to a point
then all of the intuitionistic fuzzy continuous function f : A→ B is homotopic to arbitrary.

Proof. B may deformated intuitionistic fuzzy topological space then for every t, s ∈ I , Bt,s

may deformated topological subspace. Therefore there exists a function g : B → B such that
for y0 ∈ Bt,s arbitrary, gt,s(y) = y0 such that 1Bt,s : Bt,s → Bt,s is homotopic to gt,s i.e.
1Bt,s ∼ gt,s. Therefore, there exists a continuous functionft,s : Bt,s × I2 → Bt,s such that
for every y ∈ Y, Ft,s(y, 0) = 1Bt,s(y, 0) = 1Bt,s(y), Ft,s(y, 1) = gt,s(y). We assume that,
f : At,s → Bt,s intuitionistic fuzzy continuous function. We define that intuitionistic fuzzy
function Gt,s : At,s × I2 → Bt,sasGt,s(x, (m,n)) = Ft,s(ft,s(x), (m,n)). It is clear that
Gt,s is continuous function for everyt, s ∈ I and Gt,s(x, 0) = Ft,s(ft,s(x), 0) = ft,s(x),

Gt,s(x, 1) = Ft,s(ft,s(x), 1) = y0. Thus f is homotopic to arbitrary for every t, s ∈ I . There-
fore f is intuitionistic fuzzy homotopic to arbitrary.
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Theorem 3. Let A ∈ IFS(X), B ∈ IFS(Y ), C ∈ IFS(Z) be intuitionistic fuzzy topological
spaces and f ⊂ A × B, g ⊂ B × C be intuitionistic fuzzy continuous functions. If g ∼ h then
g ◦ f and h ◦ f are intuitionistic fuzzy continuous and g ◦ f ∼ h ◦ f .

Proof. If g ∼ h than there exists a continuous intuitionistic fuzzy function F such that
Ft,s(y, 0) = gt,s and Ft,s(y, 1) = ft,s for every t, s ∈ I . Let us define a function G with re-
spect to F such that Gt,s(x, (m,n)) = Ft,s(f(x), (m,n)) for everyt, s ∈ I . It is clear that G
is intuitionistic fuzzy continuous function. However Gt,s(x, 0) = Ft,s(ft,s(x), 0) = gt,sft,s and
Gt,s(x, 1) = Ft,s(ft,s(x), 1) = ht,sft,s for every t, s ∈ I , too. Therefore, gt,sft,s ∼ ht,sft,s, for
every t, s ∈ I thus gf ∼ hf .
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[3] Bayramov, S., Ç. Gündüz, The Cech homology theory in the category of Sostak fuzzy topo-
logical spaces, Int. J. Contemp. Math. Sciences, Vol. 5, 2010, No. 9, 433–448.
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