THE HOMOMORPHISM AND ANTI–HOMOMORPHISM OF LOWER LEVEL SUBGROUPS OF AN INTUITIONISTIC ANTIFUZZY SUBGROUP

N. PALANIAPPAN¹, K. ARJUNAN² AND M. S. ANITHA³

¹ Alagappa University, Karaikudi – 630003, Tamilnadu, India
palaniappan1950@yahoo.co.in

² Department of Mathematics, St. Michael College of Engineering & Technology,
Kalayarkoil – 630551, Tamilnadu, India
arjunan_1975@yahoo.co.in

³ Department of Mathematics, St. Michael College of Engineering & Technology,
Kalayarkoil – 630551, Tamilnadu, India.

ABSTRACT.

In this paper, we introduce some properties of an intuitionistic antifuzzy subgroup of a group with homomorphism and anti-homomorphism.

2000 AMS SUBJECT CLASSIFICATION : 03F55, 08A72, 20N25.

KEY WORDS: Anti-homomorphism, Homomorphism, Intuitionistic antifuzzy subgroup, Intuitionistic fuzzy lower level subset, Intuitionistic fuzzy lower level subgroup, Intuitionistic fuzzy subsets

INTRODUCTION.

1. PRELIMINARIES :

1.1 Definition :

An intuitionistic fuzzy subset (IFS) A in a set X is defined as an object of the form A = { (x, μA(x), νA(x)) / x ∈ X }, where μA : X → [0,1] and νA : X → [0,1] define the degree of membership and the degree of non-membership of the element x ∈ X respectively and for every x ∈ X satisfying 0 ≤ μA(x) + νA(x) ≤ 1.

1.2 Definition:

Let G be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic antifuzzy subgroup(AIFSG) of G if the following conditions are satisfied:

(i) μA(xy⁻¹) ≤ max{ μA(x), μA(y) },
(ii) νA(xy⁻¹) ≥ min{ νA(x), νA(y) }, for all x and y ∈ G.
1.3 Definition:
Let A be an intuitionistic fuzzy subset of a set X. For $t \in [0, 1]$, the lower level subset of A is the set,
$$A_t = \{ x \in X : \mu_A(x) \leq t \text{ and } \nu_A(x) \geq t \}.$$
This is called an intuitionistic fuzzy lower level subset of A.

1.4 Definition:
Let A be an intuitionistic antifuzzy subgroup of a group G. The subgroup A_t of G, for $t \in [0,1]$ such that $t \geq \mu_A(e)$ and $t \leq \nu_A(e)$ is called a lower level subgroup of A.

1.5 Definition:
If (G, \cdot) and (G', \cdot) are any two groups, then the function $f : G \to G'$ is called a group homomorphism if $f(xy) = f(x)f(y)$, for all x and $y \in G$.

1.6 Definition:
If (G, \cdot) and (G', \cdot) are any two groups, then the function $f : G \to G'$ is called a group anti-homomorphism if $f(xy) = f(y)f(x)$, for all x and $y \in G$.

1.7 Definition:
Let X and X' be any two sets. Let $f : X \to X'$ be any function and let A be an intuitionistic fuzzy subset in X, V be an intuitionistic fuzzy subset in $f(X) = X'$, defined by
$$\mu_V(y) = \inf_{x \in f^{-1}(y)} \mu_A(x) \quad \text{and} \quad \nu_V(y) = \sup_{x \in f^{-1}(y)} \nu_A(x), \quad \text{for all } x \in X \text{ and } y \in X'.$$

A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

1.1 Theorem:
Let G, G' be any two groups with identity. Let $f : G \to G'$ be a homomorphism. Then,
(i) $f(1) = 1'$ where 1 and $1'$ are the identities of G and G' respectively.
(ii) $f(a^{-1}) = [f(a)]^{-1}$, for all $a \in G$.

Proof: It is trivial.

1.2 Theorem:
Let G, G' be any two groups with identity. Let $f : G \to G'$ be an anti-homomorphism. Then,
(i) $f(1) = 1'$ where 1 and $1'$ are the identity of G and G' respectively, and
(ii) $f(a^{-1}) = [f(a)]^{-1}$, for all $a \in G$.

Proof: It is trivial.

SOME PROPOSITIONS:
1.1 Proposition:
Let A be an intuitionistic antifuzzy subgroup of a group G. Then for $t \in [0,1]$ such that $t \geq \mu_A(e)$ and $t \leq \mu_A(e)$, A_t is a subgroup of G.

1.2 Proposition:
The homomorphic image of an intuitionistic antifuzzy subgroup of a group G is an intuitionistic antifuzzy subgroup of a group G'.

1.3 Proposition:
The homomorphic pre-image of an intuitionistic antifuzzy subgroup of a group G' is an intuitionistic antifuzzy subgroup of a group G.

1.4 Proposition:
The anti-homomorphic image of an intuitionistic antifuzzy subgroup of a group G is an intuitionistic antifuzzy subgroup of a group G'.

15
1.5 Proposition:

The anti-homomorphic pre-image of an intuitionistic antifuzzy subgroup of a group G' is an intuitionistic antifuzzy subgroup of a group G.

1.6 Proposition:

The homomorphic image of a lower level subgroup of an intuitionistic antifuzzy subgroup of a group G is a lower level subgroup of an intuitionistic antifuzzy subgroup of a group G'.

Proof:

Let G and G' be any two groups.
Let $f : G \to G'$ be a homomorphism.
That is $f(xy) = f(x)f(y)$ for all x and $y \in G$.
Let $V = f(A)$, where A is an intuitionistic antifuzzy subgroup of a group G.
Clearly V is an intuitionistic antifuzzy subgroup of a group G'.
Let x and $y \in G$, implies $f(x)$ and $f(y)$ in G'.
Clearly A_t is a lower level subgroup of A.
That is $\mu_A(x) \leq t$ and $\nu_A(x) \geq t$; $\mu_A(y) \leq t$ and $\nu_A(y) \geq t$.

We have to prove that $f(A_t)$ is a lower level subgroup of V.
Now,
$$\mu_V(f(x)) \leq \mu_A(x) \leq t \text{ and } \nu_V(f(x)) \geq \nu_A(x) \geq t;$$
$$\mu_V(f(y)) \leq \mu_A(y) \leq t \text{ and } \nu_V(f(y)) \geq \nu_A(y) \geq t;$$
which implies that $\mu_V(f(x)f(y)^{-1}) \leq t$.
And,
$$\nu_V(f(x)) \geq \nu_A(x) \geq t \text{ and } \nu_V(f(y)) \geq \nu_A(y) \geq t;$$
$$\nu_V(f(x)f(y)^{-1}) = \nu_V(f(x)f(y)^{-1}), \text{ as } f \text{ is a homomorphism}$$
Hence $f(A_t)$ is a lower level subgroup of an intuitionistic antifuzzy subgroup V of a group G'.

1.7 Proposition:

The homomorphic pre-image of a lower level subgroup of an intuitionistic antifuzzy subgroup of a group G' is a lower level subgroup of an intuitionistic antifuzzy subgroup of a group G.

Proof:

Let G and G' be any two groups.
Let $f : G \to G'$ be a homomorphism.
That is $f(xy) = f(x)f(y)$ for all x and $y \in G$.
Let $V = f(A)$, where V is an intuitionistic antifuzzy subgroup of a group G'.
Clearly A is an intuitionistic antifuzzy subgroup of a group G.
Let $f(x)$ and $f(y) \in G'$, implies x and y in G.
Clearly $f(A_t)$ is a lower level subgroup of V.
That is $\mu_V(f(x)) \leq t$ and $\nu_V(f(x)) \geq t$; $\mu_V(f(y)) \leq t$ and $\nu_V(f(y)) \geq t$;
\[\mu_V(f(x)(f(y))^{-1}) \leq t \text{ and } \nu_V(f(x)(f(y))^{-1}) \geq t. \]

We have to prove that \(A_t \) is a lower level subgroup of \(A \).

Now, \(\mu_A(x) = \mu_V(f(x)) \leq t \), implies that \(\mu_A(x) \leq t \):

\[\mu_A(y) = \mu_V(f(y)) \leq t, \text{ implies that } \mu_A(y) \leq t; \text{ and} \]
\[\mu_A(xy^{-1}) = \mu_V(f(x)f(y^{-1})), \]
\[= \mu_V(f(x)f(y^{-1})), \text{ as } f \text{ is a homomorphism} \]
\[= \mu_V(f(x)(f(y))^{-1}), \text{ as } f \text{ is a homomorphism} \]
\[\leq t, \]

which implies that \(\mu_A(xy^{-1}) \leq t. \)

And, \(\nu_A(x) = \nu_V(f(x)) \geq t \), implies that \(\nu_A(x) \geq t \):

\[\nu_A(y) = \nu_V(f(y)) \geq t, \text{ implies that } \nu_A(y) \geq t; \text{ and} \]
\[\nu_A(xy^{-1}) = \nu_V(f(x)f(y^{-1})), \]
\[= \nu_V(f(x)f(y^{-1})), \text{ as } f \text{ is a homomorphism} \]
\[= \nu_V(f(x)(f(y))^{-1}), \text{ as } f \text{ is a homomorphism} \]
\[\geq t, \]

which implies that \(\nu_A(xy^{-1}) \geq t. \)

Therefore \(\mu_A(xy^{-1}) \leq t \text{ and } \nu_A(xy^{-1}) \geq t. \)

Hence \(A_t \) is a lower level subgroup of an intuitionistic antifuzzy subgroup \(A \) of a group \(G \).

1.8 Proposition:

The anti-homomorphic image of a lower level subgroup of an intuitionistic antifuzzy subgroup of a group \(G \) is a lower level subgroup of an intuitionistic antifuzzy subgroup of a group \(G^1 \).

Proof:

Let \(G \) and \(G^1 \) be any two groups.

Let \(f : G \rightarrow G^1 \) be an anti-homomorphism.

That is \(f(xy) = f(y)f(x) \) for all \(x \) and \(y \in G \).

Let \(V = f(A) \), where \(A \) is an intuitionistic antifuzzy subgroup of a group \(G \).

Clearly \(V \) is an intuitionistic antifuzzy subgroup of a group \(G^1 \).

Let \(x \) and \(y \in G \), implies \(f(x) \) and \(f(y) \) in \(G^1 \).

Clearly \(A_t \) is a lower level subgroup of \(A \).

That is \(\mu_A(x) \leq t \text{ and } \nu_A(x) \geq t; \mu_A(y) \leq t \text{ and } \nu_A(y) \geq t; \mu_A(y^{-1}x) \leq t \text{ and } \nu_A(y^{-1}x) \geq t. \)

We have to prove that \(f(A_t) \) is a lower level subgroup of \(V \).

Now, \(\mu_V(f(x)) \leq \mu_A(x) \leq t, \text{ implies that } \mu_V(f(x)) \leq t; \text{ and} \)
\[\mu_V(f(y)) \leq \mu_A(y) \leq t, \text{ implies that } \mu_V(f(y)) \leq t; \text{ and} \]
\[\mu_V(f(x)(f(y))^{-1}) = \mu_V(f(x)f(y^{-1})), \text{ as } f \text{ is an anti-homomorphism} \]
\[= \mu_V(f(y^{-1}x)), \text{ as } f \text{ is an anti-homomorphism} \]
\[\leq \mu_A(y^{-1}x) \leq t, \]

which implies that \(\mu_V(f(x)(f(y))^{-1}) \leq t. \)

And, \(\nu_V(f(x)) \geq \nu_A(x) \geq t, \text{ implies that } \nu_V(f(x)) \geq t; \text{ and} \)
\[\nu_V(f(y)) \geq \nu_A(y) \geq t, \text{ implies that } \nu_V(f(y)) \geq t; \text{ and} \]
\[\nu_V(f(x)(f(y))^{-1}) = \nu_V(f(x)f(y^{-1})), \text{ as } f \text{ is an anti-homomorphism} \]
\[= \nu_V(f(y^{-1}x)), \text{ as } f \text{ is an anti-homomorphism} \]
\[\geq \nu_A(y^{-1}x) \geq t, \]

which implies that \(\nu_V(f(x)(f(y))^{-1}) \geq t. \)
Therefore $\mu_V(f(x)(f(y))^{-1}) \leq t$ and $\nu_V(f(x)(f(y))^{-1}) \geq t$.

Hence $f(A_t)$ is a lower level subgroup of an intuitionistic antifuzzy subgroup V of a group G^l.

1.9 Proposition :

The anti-homomorphic pre-image of a lower level subgroup of an intuitionistic antifuzzy subgroup of a group G^l is a lower level subgroup of an intuitionistic antifuzzy subgroup of a group G.

Proof:

Let G and G^l be any two groups.

Let $f: G \rightarrow G^l$ be an anti-homomorphism.

That is $f(xy) = f(y)f(x)$, for all x and $y \in G$.

Let $V=f(A)$, where V is an intuitionistic antifuzzy subgroup of a group G^l.

Clearly A is an intuitionistic antifuzzy subgroup of a group G.

Let $f(x)$ and $f(y) \in G^l$, implies x and y in G.

Clearly $f(A_t)$ is a lower level subgroup of V.

That is $\mu_V(f(x)) \leq t$ and $\nu_V(f(x)) \geq t$; $\mu_V(f(y)) \leq t$ and $\nu_V(f(y)) \geq t$;

$\mu_V((f(y))^{-1}f(x)) \leq t$ and $\nu_V((f(y))^{-1}f(x)) \geq t$.

We have to prove that A_t is a lower level subgroup of A.

Now, $\mu_A(x) = \mu_V(f(x)) \leq t$, implies that $\mu_A(x) \leq t$: $\mu_A(y) = \mu_V(f(y)) \leq t$, implies that $\mu_A(y) \leq t$; and $\mu_A(xy^{-1}) = \mu_V(f(xy^{-1}))$,

$= \mu_V((f(y))^{-1}f(x))$, as f is an anti-homomorphism

$= \mu_V((f(y))^{-1}f(x))$, as f is an anti-homomorphism

$\leq t$,

which implies that $\mu_A(xy^{-1}) \leq t$.

And, Now, $\nu_A(x) = \nu_V(f(x)) \geq t$, implies that $\nu_A(x) \geq t$: $\nu_A(y) = \nu_V(f(y)) \geq t$, implies that $\nu_A(y) \geq t$; and $\nu_A(xy^{-1}) = \nu_V(f(xy^{-1}))$,

$= \nu_V((f(y))^{-1}f(x))$, as f is an anti-homomorphism

$= \nu_V((f(y))^{-1}f(x))$, as f is an anti-homomorphism

$\geq t$,

which implies that $\nu_A(xy^{-1}) \geq t$.

Therefore $\mu_A(xy^{-1}) \leq t$ and $\nu_A(xy^{-1}) \geq t$.

Hence A_t is a lower level subgroup of an intuitionistic antifuzzy subgroup A of a group G.

BIBLIOGRAPHY

