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1 Introduction

Study in intuitionistic fuzzy subsets and application of intuitionistic fuzzy control have been
developed quickly since the definition of intuitionistic fuzzy sets was introduced by Atanassov in
1983. IFSS theory basically defies the claim that from the fact that an element x ”belongs” to a
given degree (say µ) to a fuzzy set A, naturally follows that x should ”not belong” to A to the
extent 1 − µ, an assertion implicit in the concept of a fuzzy set. On the contrary, IFSS assign to
each element of the universe both a degree of membership µ and one of non-membership ν such
that µ + ν ≤ 1, thus relaxing the enforced duality ν = 1 − µ from fuzzy set theory. Obviously,
when µ+ ν = 1 for all elements of the universe, the traditional fuzzy set concept is recovered.

Technology of intuitionistic fuzzy control has been applied to many fields including medical
field [7, 8, 9]. But the basic theory of intuitionistic fuzzy control is inferior to its application, espe-
cially the theory of intuitionistic fuzzy reasoning. Since Zadeh [10] introduced the compositional
rule of inference (CRI), many researchers have take advantage of fuzzy implication operators
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to represent the relation between two variables linked together by means of an if − then rule.
In intuitionistic fuzzy reasoning theory, intuitionistic fuzzy implication operators play the same
important role.

This paper is organized as follows. In Section 2 we propose a binary operation ∗ on the set
of all intuitionistic fuzzy implication I that makes (I, ∗) a monoid. This is the first work in which
such a rich structure has been obtained on the entire set of intuitionistic fuzzy implications I In
Section 3 We characterize the largest such subgroupK and, based on their representation, propose
a group action of K on I. Clearly, this group action partitions I into equivalence classes. And in
Section 4 we propose a new method for the construction of new intuitionistic fuzzy implications.
Finally we draw conclusions and indicate future lines of research.

2 Preliminaries

First we give the concept of intuitionistic fuzzy set defined by Atanassov and we recall some
elementary definitions that we use in the sequel. Assume that X is the universe.

Definition 1 ([1, 2]). The intuitionistic fuzzy subsets (in shorts IFSS) defined on a non-empty set
X as objects having the form

A = {〈x, µ(x), ν(x)〉 : x ∈ X}

where the functions µ : X → [0, 1] and ν : X → [0, 1] denote the degree of membership
and the degree of non-membership of each element x ∈ X to the set A respectively, and 0 ≤
µ(x) + ν(x) ≤ 1 for all x ∈ X .

For the sake of simplicity, we shall use the symbol 〈µ, ν〉 for the intuitionistic fuzzy subset
A = {〈x, µ(x), ν(x)〉 : x ∈ X}.

Definition 2 ([2]). Let A = 〈µA, νA〉 and B = 〈µB, νB〉 IFSS of X . Then
A ⊂ B iff µA ≤ µB and νA ≥ νB
A = B iff A ⊂ B and B ⊂ A

Ac = 〈νA, µA〉
A ∩B = 〈µA ∧ µB, νA ∨ νB〉
A ∪B = 〈µA ∨ µB, νA ∧ νB〉
�A = 〈µA, 1− µA〉, ♦A = 〈1− νA, νA〉

We recall from [5] that L∗ = {x̃ = (x1, x2)/x1 + x2 ≤ 1} is a complete lattice with the order
defined by

x̃ ≥ ỹ if and only if x1 ≥ y1 and x2 ≤ y2

Now we recall the definition of intuitionistic fuzzy implication operator given by Atanassov
and Gargov [3].

8



Figure 1: Graphical representation of the set L∗

Definition 3. An intuitionistic fuzzy implication operator (IFIO) is any I : L∗2 −→ L∗ mapping
satisfying the border conditions:
I((0, 1), (0, 1)) = (1, 0); I((0, 1), (1, 0)) = (1, 0)

I((1, 0), (1, 0)) = (1, 0); I((1, 0), (0, 1)) = (0, 1)

and the two following conditions:

1) If x̃ ≤ ỹ, then ∀z̃ ∈ L∗I(x̃, z̃) ≥ I(ỹ, z̃)

2) If ỹ ≤ z̃, then ∀x̃ ∈ L∗I(x̃, ỹ) ≤ I(x̃, z̃)

Definition 4 ([6]). If (X, ∗) is a mathematical system such that ∀ a, b, c ∈ X, (a∗b)∗c = a∗(b∗c),
then ∗ is called associative and (X, ∗) is called a semigroup.

3 Monoid structure on the set of all
intuitionistic fuzzy implications

Let I be the set of all intuitionistic fuzzy implications. In this section, we begin by proposing a
binary operation ∗ on the set I of all intuitionistic fuzzy implications and show that (I, ∗) forms a
monoid and discuss the properties preserved under this operation.

Definition 5. For any two intuitionistic fuzzy implications I ,J we define I ∗ J: L∗2 −→ L∗ as
(I ∗ J)(x̃, ỹ) = I(x̃, J(x̃, ỹ)),x̃,ỹ ∈ L∗.

The following result shows that I ∗ J is, indeed, an intuitionistic fuzzy implication.

Theorem 1. I ∗ J is an intuitionistic fuzzy implication, i.e., I ∗ J ∈ I.
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Proof. (i) Let x̃1, x̃2, ỹ ∈ L∗ be such that x̃1 ≥ x̃2. Then J(x̃1, ỹ) ≤ J(x̃2, ỹ).
Then (I ∗ J)(x̃1, ỹ) = I(x̃1, J(x̃1, ỹ)) ≤ I(x̃2, J(x̃2, ỹ)) = (I ∗ J)(x̃2, ỹ).
Then I ∗J is decreasing for the first variable. Similarly one can show that I ∗J is increasing
in the second variable.

(ii) (I ∗ J)(0̃, 0̃) = I(0̃, J(0̃, 0̃)) = I(0̃, 1̃) = 1̃, (I ∗ J)(1̃, 1̃) = I(1̃, J(1̃, 1̃)) = I(1̃, 1̃) = 1̃,
(I ∗ J)(1̃, 0̃) = I(1̃, J(1̃, 0̃)) = I(1̃, 0̃) = 0̃.

Theorem 2. (I, ∗) forms a monoid, whose identity element is given by

ID(x̃, ỹ) =

1̃ if x̃ = 0̃

ỹ if x̃ 6= 0̃

Proof. From the previous theorem ∗ is a binary closed operation on the set I. For associativity of
∗, let I, J,K ∈ I and x̃, ỹ ∈ L∗. Then

(I ∗ (J ∗K))(x̃, ỹ) = I(x̃, (J ∗K)(x̃, ỹ))

= I(x̃, (J(x̃, K(x̃, ỹ)))

= (I ∗ J)(x̃, K(x̃, ỹ))

= ((I ∗ J) ∗K)(x̃, ỹ)

Further,

(I ∗ ID)(x̃, ỹ) = I(x̃, ID(x̃, ỹ))

=

1̃ if x̃ = 0̃

I(x̃, ỹ) if x̃ 6= 0̃

= I(x̃, ỹ)

Similarly ID ∗ I = I then ID becomes the identity element in I.

Remark 1. (I, ∗) is not a group. Indeed, take a

I1(x̃, ỹ) =

ỹ if x̃ = 1̃

1̃ otherwise

and we have I ∗ I1 = I1 for all I ∈ I. Thus there does not exist any J ∈ I such that J ∗ I1 = ID.

Lemma 1. Let I ∈ I; then I is invertible w.r.t ∗ if and only if there exists a unique J ∈ I such
that for any x̃, ỹ ∈ L∗ with x̃ 6= 0̃, I(x̃, J(x̃, ỹ)) = ỹ = J(x̃, I(x̃, ỹ))

Proof. Let I be an invertible element w.r.t ∗, i.e., there exists a unique J ∈ I such that I ∗ J =

ID = J ∗ I . In other words,
I(x̃, J(x̃, ỹ)) = ID(x̃, ỹ) = J(x̃, I(x̃, ỹ)), x̃, ỹ ∈ L∗.
But for x̃ 6= 0̃ we have ID(x̃, ỹ) = ỹ thus for x̃ 6= 0̃, I(x̃, J(x̃, ỹ)) = ỹ = J(x̃, I(x̃, ỹ)).
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Conversely, assume that there exists a unique J ∈ I such that for x̃ 6= 0̃ I(x̃, J(x̃, ỹ)) =

ID(x̃, ỹ) = J(x̃, I(x̃, ỹ)).
Since I, J ∈ I and I ∗ J, J ∗ I ∈ I we have I(x̃, J(x̃, ỹ)) = ID(x̃, ỹ) = J(x̃, I(x̃, ỹ)). Then I is
invertible w.r.t ∗.

Theorem 3 ([4]). A function ϕ : L∗ −→ L∗ is a continuous increasing bijection if, and only if,
there exists a continuous increasing bijection λ : [0, 1] −→ [0, 1] such that ϕ(x) = (λ(x1), 1 −
λ(1− x2)).

Theorem 4. The solutions of I(x̃, J(x̃, ỹ)) = ỹ = J(x̃, I(x̃, ỹ)) are of the forms I(x̃, , ỹ) = ϕ(ỹ)

and J(x̃, ỹ) = ϕ−1(ỹ) for some continuous increasing bijection ϕ

Proof. Let I and J ∈ I such that I(x̃, J(x̃, ỹ)) = ỹ = J(x̃, I(x̃, ỹ)) for all x̃ 6= 0̃ and ỹ ∈ L∗. Let
x̃ 6= 0̃ be fixed arbitrary and define two functions ϕx̃0 , ψx̃0 : L∗ −→ L∗ as ϕx̃0(ỹ) = I(x̃0, ỹ) and
ψx̃0(ỹ) = J(x̃0, ỹ). Clearly, both ϕx̃0 , ψx̃0 are increasing function on L∗. Then I(x̃0, J(x̃0, ỹ)) =

ϕx̃0(ψx̃0(ỹ)) = (ϕx̃0 ◦ ψx̃0)(ỹ) = ỹ for all ỹ ∈ L∗. Similarly, J(x̃0, I(x̃0, ỹ)) = ψx̃0(ϕx̃0(ỹ)) =

(ψx̃0 ◦ ϕx̃0)(ỹ) = ỹ for every ỹ ∈ L∗. Thus ψx̃0 = ϕ−1
x̃0

and ψx̃0 is a bijection. Hence ψx̃0
increasing bijection on L∗ for every x̃0 6= 0̃.
Since x̃0 is chosen arbitrarily, ψx̃ = ϕ−1

x̃ for all x̃ 6= 0̃ Thus for x̃ 6= 0̃ I(x̃, ỹ) = ψx̃(ỹ) and
J(x̃, ỹ) = ψ−1

x̃ (ỹ).
Let x̃1, x̃2 not null such that x̃1 ≤ x̃2. Then I(x̃1, ỹ) ≤ I(x̃2, ỹ) implies that ψx̃1(ỹ) ≤ ψx̃2(ỹ) and
ψ−1
x̃1

(ỹ) ≤ ψ−1
x̃2

(ỹ) for all ỹ ∈ L∗. And we have

ψ−1
x̃1
≤ ψ−1

x̃2
=⇒ ψx̃1 ◦ ψ−1

x̃1
≤ ψx̃1 ◦ ψ−1

x̃2

=⇒ id ≤ ψx̃1 ◦ ψ−1
x̃2

=⇒ id ≤ ψx̃1 ◦ ψ−1
x̃2
≤ ψx̃2 ◦ ψ−1

x̃2

=⇒ id ≤ ψx̃1 ◦ ψ−1
x̃2
≤ id

Hence ψx̃1 ◦ ψ−1
x̃2
≡ id i.e ψx̃1(ỹ) = ψx̃2(ỹ) for all ỹ ∈ L∗ Since x̃1 and x̃1 are arbitrarily chosen

ψx̃1 ≡ ψx̃2 . Thus I(x̃, ỹ) = ψ(ỹ) and J(x̃, ỹ) = ψ−1(ỹ) for some increasing bijection on L∗.

Then from the obvious theorems we have the following result

Theorem 5. I ∈ I is invertible w.r.t ∗ if and only if

I(x̃, ỹ) =

1̃ if x̃ = 0̃

ϕ(ỹ) otherwise

where the function ϕ : L∗ −→ L∗ is an increasing bijection

Let K the largest subgroup of the monoid I
Now we propose yet another new generating method of intuitionistic fuzzy implications from
intuitionistic fuzzy implications and show that this method imposes a semigroup structure on the
set I.
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4 Semigroup structure on I

Definition 6. Let I, J ∈ I . Define I B J : L∗2 −→ L∗ as follows: (I B J)(x̃, ỹ) =

I(J(1̃, x̃), J(x̃, ỹ)), x̃, ỹ ∈ L∗.

Theorem 6. We have I B J is an intuitionistic fuzzy implication. i.e., I B J ∈ I.

Proof. Let I, J ∈ I and x̃1, x̃2, ỹ ∈ L∗.
Let x̃1 ≤ x̃2. Then J(x̃1, ỹ) ≥ J(x̃2, ỹ) and J(1, x̃1) ≤ J(1, x̃2)

(I B J)(x̃1, ỹ) = I(J(1̃, x̃1), J(x̃1, ỹ)) ≥ I(J(1̃, x̃1), J(x̃2, ỹ))

≥ I(J(1̃, x̃2), J(x̃2, ỹ)) = (I B J)(x̃2, ỹ)

Thus B is decreasing in the first variable. Similarly, one can show that B is increasing in the
second variable. Now we have
(I B J)(0̃, 0̃) = I(J(1̃, 0̃), J(0̃, 0̃)) = I(0̃, 1̃) = 1̃.
(I B J)(1̃, 1̃) = I(J(1̃, 1̃), J(1̃, 1̃)) = I(1̃, 1̃) = 1̃

(I B J)(1̃, 0̃) = I(J(1̃, 1̃), J(1̃, 0̃)) = I(1̃, 0̃) = 0̃

Hence I B J is an intuitionistic fuzzy implication.

Theorem 7. (I,B) is a semigroup.

Proof. from the obvious theorem B is a binary operation on I. Then it is enough to show that B
is associative in I. Let I, J, T ∈ I and x̃, ỹ ∈ L∗.
We have

(I B (J B T ))(x̃, ỹ) = I((J B T )(1̃, x̃), (J B T )(x̃, ỹ))

= I(J(T (1̃, 1̃), T (1̃, x̃)), J(T (1̃, x̃), T (x̃, ỹ)))

= I(J(1̃, T (1̃, x̃)), J(T (1̃, x̃), T (x̃, ỹ)))

and, ((I B J) B T )(x̃, ỹ) = (I B J)(T (1̃, x̃), T (x̃, ỹ))

= I(J(1̃, T (1̃, x̃)), J(T (1̃, x̃), T (x̃, ỹ))).

Then B is associative in I and (I,B) is a semigroup.

Theorem 8. Let I, J ∈ K. Then I B J = I ∗ J .

Proof. Let I, J ∈ K i.e., for some ϕ, ψ ∈ Θ,

I(x̃, ỹ) =

1̃ if x̃ = 0̃

ϕ(ỹ) otherwise

and J(x̃, ỹ) =

1̃ if x̃ = 0̃

ψ(ỹ) otherwise

Now we have

(I B J)(x̃, ỹ) = I(J(1̃, x̃), J(x̃, ỹ))

= I(ψ(x̃), J(x̃, ỹ)) =

1̃ if x̃ = 0̃

ϕ(ψ(ỹ)) otherwise
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and (I ∗ J)(x̃, ỹ) = I(x̃, J(x̃, ỹ)) =

1̃ if x̃ = 0̃

ϕ(ψ(ỹ)) otherwise

Hence I B J = I ∗ J

Theorem 9. For all I ∈ IT ∈ K, T ∗ (I B T−1) = (T ∗ I) B T−1

Proof. Let I ∈ I and T ∈ K we know that T (x̃, ỹ) =

1̃ if x̃ = 0̃

ϕ(ỹ) otherwise

for some ϕ ∈ Θ. Also T−1 will be given by

T−1(x̃, ỹ) =

1̃ if x̃ = 0̃

ϕ−1(ỹ) otherwise

if x̃ = 0̃. Then (T ∗ (I B T−1))(0̃, ỹ) = 1̃ = ((T ∗ I) B T−1)(0̃, ỹ) if x̃ 6= 0̃. Then

(T ∗ (I B T−1))(x̃, ỹ) = T (x̃, (I B T−1)(x̃, ỹ))

= T (x̃, I(T−1(1̃, x̃), T−1(x̃, ỹ)))

= ϕ(I(ϕ−1(x̃), ϕ−1(ỹ)))

and

((T B I) ∗ T−1)(x̃, ỹ) = (T ∗ I)(T−1(1̃, x̃), T−1(x̃, ỹ))

= T (T−1(1̃, x̃), I(T−1(1̃, x̃), T−1(x̃, ỹ)))

= T (ϕ(x̃), I(ϕ−1(x̃), ϕ−1(ỹ)))

= ϕ(I(ϕ−1(x̃), ϕ−1(ỹ)))

Hence we have proved that (T ∗ (I B T−1))(x̃, ỹ) = ((T ∗ I) B T−1)(x̃, ỹ) for all x̃, ỹ ∈ L∗.

5 Group action of K on I

In this section we define the group action of K on I. for that we first show some result that we
need in the sequel.

Theorem 10. The groups (K, ∗), (Θ, ◦) are isomorphic to each other

Proof. Let f : Θ −→ K defined by f(ϕ) = I where

I(x̃, ỹ) =

1̃ if x̃ = 0̃

ϕ(ỹ) otherwise

It is easy to see that the map f is one and onto. Let ϕ1, ϕ2 ∈ θ and f(ϕ1) = I1, f(ϕ2) = I2

Where Ii(x̃, ỹ) =

1̃ if x̃ = 0̃

ϕi(ỹ) otherwise

for i = 1, 2
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Now we have: (
f(ϕ1) ∗ f(ϕ2)

)
(x̃, ỹ) =

(
I1 ∗ I2

)
(x̃, ỹ)

= I1
)
(x̃, I2(x̃, ỹ)

=

1̃ if x̃ = 0̃

ϕ1(ϕ2(ỹ)) otherwise

= f
(
ϕ1 ◦ ϕ2

)
(x̃, ỹ)

Thus f is an isomorphism.

Definition 7. Let (G, ∗) be a group and H be a nonempty set. A function • : G × H −→ H is
called a group action if, for all g1, g2 ∈ G and h ∈ H , • satisfies the following two conditions:

1) g1 • (g2 • h) = (g1 ∗ g2) • h

2) e • h = h where e is the identity of G.

Definition 8. Let • : K × I −→ I be a map defined by (T, I) −→ T • I = T ∗ I ∗ T−1.

Lemma 2. The function • is a group action of K on I

Proof. Let T1, T2 ∈ K and I ∈ I.
1)

T1 • (T2 • I) = T1 ∗ (T2 • I) ∗ T−1
1

= T1 ∗ T2 ∗ I ∗ T−1
2 ∗ T−1

1

= (T1 ∗ T2) ∗ I ∗ (T1 ∗ T2)−1

= (T1 ∗ T2) • I.

2) Similarly, ID • I = ID ∗ I ∗ I−1
D = I , since ID is the identity of (I, ∗).

Thus • is a group action of K on I.

Definition 9. Let I, J ∈ I. Define I v J ⇔ J = T • I for some T ∈ K. In other words,
I v J ⇔ J = T ∗ I ∗ T−1 for some T ∈ K.

Lemma 3. The relation v is an equivalence relation and it partitions the set I.

Proof. We have for I, J ∈ I
1 I v I because I = ID ∗ I ∗ I−1

D

2 And we have I v J ⇒ J = T ∗I ∗T−1 this implies that I = T−1∗I ∗T then we takeH = T−1.
Hence J v I .
3 for the transitivity let I v J and J v K we can easily show that I v K.

Remark 2. Let I ∈ I. Then the equivalence class containing I will be of the form [I] =
{
J ∈

I|J = T ∗ I ∗ T−1 for some T ∈ K
}

.
Since any T ∈ K is of the form

T (x̃, ỹ) =

1̃ if x̃ = 0̃

ϕ(ỹ) otherwise

for some ϕ ∈ θ, we have that, if J ∈ [I], then J(x̃, ỹ) = ϕ(I(x̃, ϕ−1(ỹ))) for all x̃, ỹ ∈ L∗.
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Now we define a new group action of K on I.

Theorem 11. Let t : K × I −→ I be defined by T t I = T ∗ I , T ∈ K, I ∈ I.
The function t is a left group action of K on I.

Proof. i) Let T1, T2 ∈ K and I ∈ I. Then

T1 t (T2 t I) = T1 ∗ (T2 t I)

= T1 ∗ (T2 ∗ I)

= (T1 ∗ T2) ∗ I
= (T1 ∗ T2) t I

ii)ID t I = ID ∗ I = I Thus t is a left group action of K on I

6 Bijective transformations of intuitionistic fuzzy implications

Definition 10. Let I : L∗2 −→ L∗ be a function and ϕ, ψ, µ ∈ Θ. We define the bijective trans-
formation Jϕ,ψ,µ : L∗2 −→ L∗ of I as follows:

Jϕ,ψ,µ(x̃, ỹ) = ϕ(I(ψ(x̃), µ(ỹ)) (1)

The following result shows that any bijective transformation of the form (1) can also generate
intuitionistic fuzzy implications from intuitionistic fuzzy implications.

Theorem 12. Let I : L∗2 −→ L∗ be a function and ϕ, ψ, µ ∈ Θ. Let Jϕ,ψ,µ be defined as in (1).
Then the following statements are equivalent:

i) I is an intuitionistic fuzzy implication

ii) Jϕ,ψ,µ is an intuitionistic fuzzy implication

Proof. ⇒) Let x̃1, x̃2, ỹ ∈ L∗ such that x̃1 ≤ x̃2. Then we have I(x̃2, ỹ) ≤ I(x̃1, ỹ) using the fact
that ϕ, ψ, µ ∈ Θ we defined ϕ(I(ψ(x̃2), µ(ỹ)) ≤ ϕ(I(ψ(x̃1), µ(ỹ)). This implies that Jϕ,ψ,µ is
decreasing for the first variable.

Similarly for the second variable.
And we have Jϕ,ψ,µ(0̃, 1̃) = ϕ(I(ψ(0̃), µ(1̃)) = ϕ(I(0̃, 1̃) = ϕ(1̃) = 1̃,

Jϕ,ψ,µ(1̃, 0̃) = ϕ(I(ψ(1̃), µ(0̃)) = ϕ(I(1̃, 0̃) = ϕ(0̃) = 0̃,
Jϕ,ψ,µ(1̃, 1̃) = ϕ(I(ψ(1̃), µ(1̃)) = ϕ(I(1̃, 1̃) = ϕ(1̃) = 1̃.
Hence Jϕ,ψ,µ is an intuitionistic fuzzy implication.
Conversely, let Jϕ,ψ,µ an intuitionistic fuzzy implication. Then for x̃1, x̃2, ỹ ∈ L∗ such that x̃1 ≤
x̃2.
We have Jϕ,ψ,µ(x̃2, ỹ) ≤ Jϕ,ψ,µ(x̃1, ỹ)

=⇒ ϕ(I(ψ(x̃2), µ(ỹ)) ≤ ϕ(I(ψ(x̃1), µ(ỹ)) for some ϕ, ψ, µ ∈ Θ

=⇒ I(ψ(x̃2), µ(ỹ) ≤ I(ψ(x̃1), µ(ỹ) then I is a decreasing function for the first variable because
ϕ, ψ, µ ∈ Θ. Similarly, I is increasing for the second variable.
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Now we have Jϕ,ψ,µ(0̃, 1̃) = 1̃ = ϕ(I(ψ(0̃), µ(1̃)) this implies that ϕ(I(0̃, 1̃)) = 1̃.
Hence I(0̃, 1̃) = 1̃ because ϕ(1̃) = 1̃ ∀ϕ ∈ θ
Jϕ,ψ,µ(1̃, 1̃) = 1̃ = ϕ(I(ψ(1̃), µ(1̃)) this implies that ϕ(I(1̃, 1̃)) = 1̃. Hence I(1̃, 1̃) = 1̃

Jϕ,ψ,µ(1̃, 0̃) = 0̃ = ϕ(I(ψ(1̃), µ(0̃)) this implies that ϕ(I(1̃, 0̃)) = 0̃. Hence I(1̃, 0̃) = 0̃.

From the obvious Theorem, it follows that one can always obtain intuitionistic fuzzy implica-
tions from given an intuitionistic fuzzy implication using (1).

Now, given I, J ∈ I we define

I∼ϕ,ψ,µJ ⇐⇒ J = Iϕ,ψ,µ (2)

for some ϕ, ψ, µ ∈ Θ. It can be easily seen that ∼ϕ,ψ,µ is an equivalence relation, if [I]∼ϕ,ψ,µ
denotes the equivalence class of fuzzy implications containing I w.r.t. (2), then

[I]∼ϕ,ψ,µ = {J ∈ I|J∼ϕ,ψ,µI}
= {J ∈ I|J(x̃, ỹ) = ϕ(I(ψ(x̃), µ(ỹ)))forsomeϕ, ψ, µ ∈ Θ}
= {ϕ(I(ψ(x̃), µ(ỹ)))|ϕ, ψ, µ ∈ Θ}.

Now we propose two functions from K × I −→ I. One of these turns out to be a group action of
K on I, while the other is an anti-group action.

Definition 11. Let ♦ : I×K −→ I be defined by I♦T = I ∗ T .

Theorem 13. ♦ is a right group action of K on I.

Proof. Let I ∈ I and T1, T2 ∈ K.
(I♦T1)♦T2 = (I ∗ T1)♦T2 = (I ∗ T1) ∗ T2 = I ∗ (T1 ∗ T2) = I♦(T1 ∗ T2).
I♦TD = I ∗ ID = I for all I ∈ I.
Thus ♦ is a right group action.

Definition 12. Define ∼♦ on I by I ∼♦ J ⇐⇒ J = I♦T = I ∗ T for some T ∈ K.

It is easy to verify that ∼♦ is an equivalence relation.

Remark 3. Let I ∈ I. If [I]♦ denotes the equivalence class containing I , then

[I]♦ = {J ∈ I|J∼♦I}
= {J ∈ I|J = I ∗ T for some T ∈ K}
= {J ∈ I|J(x̃, ỹ) = I(x̃, T (x̃, ỹ)) for some T ∈ K}
= {J ∈ I|J(x̃, ỹ) = I(x̃, ϕ(ỹ)) for some ϕ ∈ Θ}
= {I(x̃, ϕ(ỹ)) for some ϕ ∈ Θ}.

Definition 13. (See [6]) Let (G, ∗) be a group with identity e and S being a nonempty set. A map
◦ : G × S −→ S is called anti-group action if for all g1, g2 ∈ G, s ∈ S the map ◦ satisfies the
following :
(i) g1 ◦ (g2 ◦ s) = (g2 ◦ g1) ◦ s.
(ii) e ◦ s = s.
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Theorem 14. Let A : K× I −→ I be defined by T A I = (I B T ) ∗ T−1, T ∈ K, I ∈ I. Then A
is an anti-group action of K on I.

Proof. i) Let I ∈ I and T1, T2 ∈ K. Then

T1 A (T2 A I) = T1(A (I B T2) ∗ T−1
2 )

= ((I B T2) ∗ T−1
2 B T1) ∗ T−1

1

Since T1, T2 ∈ K. Then T1, T2 are of the following form

Ti(x̃, ỹ) =

1̃ if x̃ = 0̃

ϕi(ỹ) otherwise

i = 1, 2 for some ϕi ∈ θ, if x̃ = 0̃. Then

(T1 A (T2 A I))(x̃, ỹ) = = ((I B T2) ∗ T−1
2 B T1) ∗ T−1

1 )(x̃, ỹ)

= ((I B T2) ∗ T−1
2 B T1)(x̃, T

−1
1 (x̃, ỹ))

= ((I B T2) ∗ T−1
2 B T1)(x̃, ϕ

−1
1 (ỹ)))

= ((I B T2) ∗ T−1
2 )(T1(1̃, ỹ), T1(x̃, ϕ

−1
1 (ỹ)))

= ((I B T2) ∗ T−1
2 )(ϕ1(x), ỹ))

= ((I B T2)(ϕ1(x), T−1
2 (ϕ1(x̃), ỹ)))

= (I B T2)(ϕ1(x̃), ϕ−1
2 (ỹ))

= I(T2(1̃, ϕ1(x̃)), T2(ϕ1(x̃), ϕ−1
2 (ỹ)))

= I(ϕ2(ϕ1(x̃)), ỹ),

While

((T2 ∗ T1) A I)(x̃, ỹ) = (I B (T2 ∗ T1) ∗ (T2 ∗ T1)−1)(x̃, ỹ)

= (I B (T2 ∗ T1) ∗ (T−1
1 ∗ T−1

2 ))(x̃, ỹ)

= (I B (T2 ∗ T1) ∗ T−1
1 )(x̃, ϕ−1

2 (ỹ))

= (I B (T2 ∗ T1)(x̃, ϕ−1
1 (ϕ−1

2 (ỹ)))

= I((T2 ∗ T1)(1̃, x̃), (T2 ∗ T1)(x̃, ϕ−1
1 (ϕ−1

2 (ỹ))))

= I(ϕ2(ϕ1(x̃)), ỹ).

Thus in all cases we have shown that T1 A (T2 A I) = (T2 ∗ T1) A I , for all T2, T1 ∈ K and
I ∈ I.
ii) Let I ∈ I. Then ID A I = (I B ID)∗I−1

D = I B ID = I, henceA is an anti-group action.

Definition 14. Let I, J ∈ I. Then the relation defined as follows is an equivalence relation:
I ∼� J if and only if J = T1 t ((T3 A I)♦T2) for some T1, T2, T3 ∈ K.

In fact, by expanding the above J as follows

J = T1 t ((T3 A I)♦T2) = T1 ∗ ((T3 A I)♦T2)

= T1 ∗ ((T3 A I) ∗ T2) = T1 ∗ ((I B T3) ∗ T−1
3 ∗ T2)

Then I ∼� J if and only if J = T1 ∗ ((I B T3) ∗ T−1
3 ∗ T2) for some T1, T2, T3 ∈ K.
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Theorem 15. The equivalence classes of fuzzy implications as given in (16) are exactly the equiv-
alence classes obtained from the relation ∼�, i.e., for any I ∈ I, [I]∼ϕ,ψ,µ = [I]∼�

.

Proof. Let I ∈ I. Then

[I]∼�
= {J ∈ I|J ∼� I}
= {J ∈ I|J = T1 ∗ ((I B T3) ∗ T−1

3 ∗ T2) for some T1, T2, T3 ∈ K}
= {J ∈ I|J(x̃, ỹ) = (T1 ∗ ((I B T3) ∗ T−1

3 ∗ T2)(x̃, ỹ) for all x̃, ỹ ∈ L∗}
= {J ∈ I|J(x̃, ỹ) = T1(x̃, ((I B T3) ∗ T−1

3 ∗ T2)(x̃, ỹ) for allx̃, ỹ ∈ L∗}
= {J ∈ I|J(x̃, ỹ) = T1(x̃, ((I B T3)(x̃, (T

−1
3 ∗ T2)(x̃, ỹ)))) for all x̃, ỹ ∈ L∗}

= {J ∈ I|J(x̃, ỹ) = T1(x̃, I(T3(1̃, x̃), T3(x̃, (T
−1
3 ∗ T2)(x̃, ỹ)))) for all x̃, ỹ ∈ L∗}

= {J ∈ I|J(x̃, ỹ) = T1(x̃, I(T3(1̃, x̃), T2(x̃, ỹ)))) for all x̃, ỹ ∈ L∗}

=

{
J ∈ I|J(x̃, ỹ) =

1̃ if x̃ = 0̃

ϕ(I(ψ(x̃), µ(ỹ)) otherwise

= {J ∈ I|J(x̃, ỹ) = ϕ(I(ψ(x̃), µ(ỹ)) for someϕ, ψ, µ ∈ Θ}
= [I]∼ϕ,ψ,µ

In other words, this result shows that any bijective transformation can be represented by a
composition of group actions and an anti-group action of K on I.

7 Conclusion

Our motivation for this study was to propose a binary operation ∗ on the set I of all intuitionistic
fuzzy implications that would give a rich enough algebraic structure to glean newer and better
perspectives on intuitionistic fuzzy implications. The operation ∗ proposed in this work not only
gave a novel way of generating newer intuitionistic fuzzy implications from given ones, but also,
for the first time, imposed a monoid structure on I. By defining a suitable group action on I and
the equivalence classes obtained therefrom. And we have shown that the bijective transformations
given in (1) can be seen as a composition of group actions ♦, t and A.
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