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Abstract: In [4], some new intuitionistic fuzzy operations are defined and their properties are
studied. On the basis of two of these new intuitionistic fuzzy operations, a new intuitionistic
fuzzy implication is introduced here, numbered as — ;g7 and some of its properties are examined.
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1 Introduction

In [4] five new intuitionistic fuzzy operations, containing multiplication were introduced. For the
new intuitionistic fuzzy operations it was shown that three of the operations have conjunction
properties and three — disjunction properties. Here, on the basis of the definitions of two of the
new operations from [4], we introduce new operation implication and check some of its important
properties.
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In intuitionistic fuzzy logic (see [1, 2]), each proposition, variable or formula is evaluated
with two degrees — “truth degree” or “degree of validity” and “falsity degree” or “degree of non-
validity”. Thus, to each one of these objects, e.g., p, two real numbers, (p) and v(p), are assigned
with the following constraint:

u(p),v(p) € [0,1] and p(p) +v(p) < 1.

Let 7(p) = 1 — pu(p) — v(p). This function determines the degree of uncertainty (indetermi-
nacy). Let an evaluation function V' be defined over a set of propositions S, in such a way that
forp € S:

V(p) = (ulp), v(p))-

Hence the function V' : § — [0, 1] x [0, 1] gives the truth and falsity degrees of all elements
of S. We assume that the evaluation function V" assigns to the logical truth 7', V(") = (1, 0), and
to the logical falsity F', V(F') = (0, 1).

As it was discussed in [2], the first (classical) intuitionistic fuzzy negation is

V(=1p) = (v(p), u(p))-

Below, for simplicity, we write — instead of —.
Here, we define only the operations “disjunction” and “conjunction”, originally introduced in
[1], that have classical logic analogues, as follows:

V(pVq) = (max(u(p), u(q)), min(v(p), v(q))),

V(pAq) = (min(u(p), u(q)), max(v(p), v(q)))-

For the needs of the discussion below, we define the notions of Intuitionistic Fuzzy Tautology
(IFT, see, e.g. [1, 2]) and tautology.

Formula A is an IFT if and only if (iff) for every evaluation function V, if V(A) = (a,b),
then, a > b, while it is a (classical) tautology if and only if for every evaluation function V/, if
V(A) = (a,b), then,a =1, b = 0.

Below, when it is clear, we will omit notation “V(A)”, using directly “A” instead of the
intuitionistic fuzzy evaluation of A.

In [3], we called the object (1(p), v(p)) an Intuitionistic Fuzzy Pair (IFP).

For brevity, in a lot of places, instead of the IFP (u(A), v(A)) we will use the IFP (a,b),

where a,b € [0,1] anda + b < 1.
It is also suitable, if (a, b) and (c, d) are IFPs, to have

(a,by < {c,d) iff a<c and b>d

and
(a,b) > (c,d) iff a > c and b < d.

If an IFP is an IFT, we call it Intuitionistic Fuzzy Tautological Pair (IFTP) and if it is a
tautology — Tautological Intuitionistic Fuzzy Pair (TIFP).
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2 Intuitionistic fuzzy operations x; and Xx;

In [4], for two IFPs x = (a,b) and y = (¢, d), we introduced the following novel operations from

multiplicative type:

x X1y = (max(a, c), bd),
x X9y = (min(a, c), bd),
x X3y = (ac,bd),
x X4y = (ac, min(b, d)),
x X5y = (ac, max(b,d)).
In the present paper, we discuss only first and fifth operations. For them, in [4] was proved
the following.
First, both operations are defined correctly.
Second, let x and y have the above forms and let z = (e, f). Then, fori = 1, 5:

TXiY=yx;i,

(xxiy) XiZ:JJXi(yXiZ)'

Third, for each IFP z:
(0,1) xyz =2 =2 %1 (0,1),

(1,0) x5z =2 = x5 (1,0),
(1,0) x1 2 =(1,0) = x x1 (1,0),
(0,1) x5 =(0,1) = x x5 (0, 1).

Let
L={(a,b)la,be[0,1]]&a+b< 1}

be the set of all IFPs. The following assertion follows from above results.

Theorem 1. (£, x 1, (0,1)) and (L, x5, (1,0)) are commutative monoids.
None of these two objects is a group.

Theorem 2. If x and y are IFTPs, then x x; y, is an IFTP.

Theorem 3. If x and y are TPs, then z x; y and x x5 y are TPs.

Fourth, in intuitionistic fuzzy propositional logic there are already definitions of 53 different
intuitionistic fuzzy negations, only one from which is a classical one, as defined by

—(a,b) = (b, a).
We see that for every two IFPs = and y:

=(m X1 7y) = =(={a, b) x1 (¢, d))
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=({b,a) x1 (d,c)) = ~(max(b, d), ac)
(ac, max(b,d)) = x X5y
and
—(z x5 ) = =(=(a, b) x5 (¢, d))
=({b,a) x5 (d,c)) = =(bd, max(a, c))
(max(a, c),bd) = x X1 y;

Therefore, operation x; has the behaviour of operation disjunction, while operations X3 has
the behaviour of operation conjunction.

3 Intuitionistic fuzzy implication —g;
and its properties
Now, using the standard logical formula
r—y=xVy,
we obtain the new intuitionistic fuzzy implication
T —1g7 Yy = o Vy = (max(b, ¢), ad).
First, we see that
0 < max(b,c) + ad < max(b, c) + min(a,d) < max(b,c) + min(1 — b, 1 — ¢)

= max(b, c) + 1 — max(b,c) = 1,

i.e., implication —57 is defined correctly.
Second, we see that

(0,1) =187 (0,1) = (1,0),
(0,1) =187 (1,0) = (1,0),
(1,0) —187 (0,1) = (0, 1),
(1,0) —187 (1,0) = (1,0),

i.e., this operation satisfy these basic properties of an implication.
Third, implication —1g7 generates the standard negation, because

(a,b) =187 (0,1) = (b, a).

Fourth, we see that

(x =187 y) V (Y =187 T)

= ((a,b) =187 {c,d)) V ({c,d) —157 (a, b))
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= (max(b, ¢), ad) V (max(a,d), bc)
= (max(a, b, ¢, d), min(ad, bc)).

Obviously, this IFP is not a TIFP, but it is an IFTP.
G.F. Rose’s formula [9, 10] has the form:

((_\_'l' —187 [L’) —187 (_\_\.CE V _'33’)) —187 (_\_\$ V _|.’L').

Theorem 4. Rose’s formula is an IFT.

Proof. Sequentially, we obtain:
((_|_|ZL’ —>187 CL’) —>187 (_|_|ZE V _Ll’)) —>187 <_\_|ZE V _h’E)

= ((z =187 ) =187 (x V1)) =187 (' V —)
= (({a,0) =187 (a,0)) =157 ((a,0) V ~(a, b)) =157 ({a,b) V ~(a, b))
= ((max(a,b), ab) —us ({2, ) V (b, @))) —us ({(a,b) V (b, )
= ((max(a, b), ab) —137 (max(a,b), min(a,b))) —1s7 (max(a,b), min(a, b))
= (max(a, b, ab), min(a, b, max(a, b))) —157 (max(a,b), min(a, b))
= (max(min(a, b, max(a, b)), max(a, b)), max(a, b, ab) min(a, b))
(from

max(min(a, b, max(a, b)), max(a, b)) = max(min(a, b), max(a, b)) = max(a, b),

max(a, b, ab) min(a, b) = max(a, b) min(a, b) = ab,

we obtain)
= (max(a, b), ab)(= © —157 x).

Obviously, this IFP is an IFTP, but not a TIFP.
Fifth, following [2], we discuss the well-known Contraposition Law

( =187 y) =187 (7Y =187 —).
Theorem 5. Contraposition Law is an IFT, but not a tautology.

Proof. Sequentially, we obtain:
(z =187 y) =187 (7Y —187 —T)

= ({a,b) =187 (¢, d)) =187 (—={c, d) =187 =(a, b))
= ((a,b) =187 (¢, d)) =187 ({d, c) =187 (b, a))
= (max(b, ¢), ad) —157 (max(b, ¢), ad)

= (max(b, ¢, ad), max(b, ¢)ad).
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Obviously, this IFP is an IFTP, but not a TIFP.

Sixth, some variants of fuzzy implications (marked by /(z,y)) are described in the book of
Klir and Yuan [8] and the following nine axioms are discussed, where I(x,y) denotes x — y for
any of the possible forms of the operation implication, N is the operation negation related with
operation —, and for a,b,c,d € [0,1],a+b<1,c+d<1:

(a,b) < {c,d) iff a <c and b>d.

= (V2)(I(x, 2) = I(y, 2))),

Axiom Al (Vz,y)(z <y
y = (V2)(I(z,2) < I(2,9))),

Y
Axiom A2 (Vz,y)(x

Axiom A3 (Vy)(I(0 1),
(I =Y),
Axiom A5 (Vz)(I(z,z) = 1),

)
Axiom A6 (Vz,y, z)({(x, I(y,2)) = 1(y,I(z,2))),
Axiom A7 (Vz,y)(I(z,y) = liffz <),
Axiom A8 (Vz,y)(I(x,y) = I(N(y), N(v))),
Axiom A9 [ is a continuous function.

(

(V,

(Vy)
Axiom A4 (Vy)

(V)

(

(

For our research, having in mind the specific forms of the intuitionistic fuzzy implication
— 157 and following [2], we modify two of these axioms, as follows.
Axiom A5* (Vz)(I(x,x) is an IFT).
Axiom A7* (Vz,y)(if z <y, then, I(z,y) is an IFT).

Theorem 5. Intuitionistic fuzzy implication —g; satisfies axioms Al — A4, A5*, A6, A7*,
A8 and A9.

Proof. Letx = {(a,b),y = (c,d), z = (e, f). We obtain sequentially. Let x < y. Then for Al is
valid:

I(z, z) = (max(b,e),af) > (max(d, e), cf) = I(y, z).
The checks for A2 — A4 are similar. For A5* we have
I(xz,z) = (a,b) —157 {a,b) = (max(a,b),ab).

Obviously, in the general case (max(a, b), ab)y # (1,0),i.e. A5isnot valid, but (max(a, b), ab)
is an IFTP, i.e., A5* is valid. For A6 we have:

I(x, I(y, 2)) = {a,b) =157 ({¢,d) =157 (e, )
(a,b) —1g7 (max(d,e),cf)
(max(b, d, e),acf))
= (¢, d) —187 (max(b,e),af)
= (¢, d) =187 ({a,b) =187 (e, f)) = [(y, (7, 2)).
From z < y it follows for /(z,y) = (max(b, ¢), ad) that max(b,c) > b > d > ad, i.e. AT*

is valid, but the opposite is not valid, because, e.g., for x = (0.2,0.2),y = (0.1,0.9) I(x,y) =
(0.2,0.18) is an IFTP, but = > y. It is obvious that A8 and A9 are valid. ]
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4

Conclusion

In next research other properties of the implication —1g7 will be introduced and studied. All the

properties show that intuitionistc fuzzy sets and logics in the sense, described in [2] correspond

to the ideas of Brouwer’s intuitionism (see [5, 6, 7]).
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